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Abstract— This paper presents a hierarchical motion plan-
ning approach that can provide real-time parking plans for
autonomous vehicles with limited memory. Through combining
a high-level route planner that searches for collision-free routes
given traffic and obstacle information and a low level motion
planner that considers vehicle dynamics, our approach gen-
erates smooth trajectories with reasonable parking behaviors
rapidly with very low memory consumption. This hierarchical
approach allows for online path repairing and replanning when
newly detected obstacles that were not indicated on the offline
map obstruct the original planned trajectory. It employs a fast
clearance checking procedure to obtain a practical indicator of
repairability as well as heuristic guidance for rapid trajectory
repairing, and utilizes the high-level route planner to conduct
real-time replanning when trajectory repairing is deemed to be
difficult. Performance analysis on parking tasks in simulation
environments demonstrates the advantages of the proposed
approach in terms of both trajectory quality and planning time.

I. INTRODUCTION

Although semi-autonomous parking assistance systems are
already popular in the commercial vehicle market, fully
autonomous valet parking [1], [2] remains challenging. In
order to allow human drivers to simply drop off or request
the vehicles from outside of parking lots, the autonomous
vehicle parking system must be able to conduct both long-
range navigation inside cluttered environments as well as
short-range maneuvering around narrow parking spaces. This
requires the seamless integration of multiple intelligent com-
ponents including perception, localization, task planning,
motion planning and vehicle control. In this paper, we focus
mainly on the motion planning component of an autonomous
valet parking system that searches for collision-free and
dynamically feasible trajectories given known start and goal
poses as well as the parking lot map.

General motion planning algorithms [3]–[9] lack the abil-
ity of rapidly producing dynamically feasible and collision-
free solutions for navigation through cluttered environments
with narrow passages in a memory-efficient manner, since
it often requires complicated driving maneuvers and safety
guarantees. Existing autonomous vehicle parking systems
often inherit the above issues when they directly employ gen-
eral motion planners, and many motion planners specialized
for autonomous parking still fail to integrate short-horizon
planning with long-horizon planning or cannot incorporate
online path repairing upon new obstacle information [2],
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[10]–[15]. Wang [16] proposed Bi-Directional A-Search
Guided Tree (BIAGT) to overcome the low computational
efficiency of existing search-based motion planners and
successfully demonstrated the advantage of this fast kinody-
namic motion planner on autonomous vehicle parking tasks.
Although BIAGT improves heuristic estimation through a
two-tree structure, its effectiveness in terms of integrating
vehicle dynamics and obstacle information is still limited
especially when the planning horizon is long. Therefore,
in this paper, we present Route-Planning Bi-Directional
A-Search Guided Tree (RP-BIAGT), a hierarchical search-
based motion planning framework that achieves fast heuristic
estimation while maintaining both vehicle dynamics and
obstacle information. In addition to allowing for rapid long-
horizon motion planning with low memory consumption, this
hierarchical framework provides a convenient interface for
enforcing natural driving behaviors and incorporating new
obstacle information during execution. With a fast geometric
clearance checking procedure, RP-BIAGT can intelligently
decide whether to follow the original route and repair the
trajectory or to replan. We evaluate the performance of
RP-BIAGT on a variety of parking tasks in simulation
environments and demonstrate its advantages in terms of
initial planning, trajectory repairing and replanning.

II. RELATED WORK

Existing motion planning approaches mostly fall into three
categories: search-based [17]–[19], sampling-based [20]–
[22] and optimization-based [23]–[26]. Sampling-based mo-
tion planners are especially popular in humanoid robotic
tasks thanks to their effectiveness in high-dimensional en-
vironments [27]–[29], but inevitably raise concerns in risk-
sensitive tasks such as autonomous driving due to their non-
deterministic nature. In addition, their inefficiency caused by
larger numbers of collision checks as well as the subopti-
mality of their solution trajectories significantly constrains
their application in real-time driving tasks. Optimization-
based motion planners, on the other hand, operate on the
space of trajectories and naturally incorporate the non-
holonomic vehicle dynamics. However, since they conduct
local search instead of global search and inevitably suffer
from suboptimality caused by high-cost local optima, they
are typically combined with other global planners instead
of operating alone [26], [30]–[32]. Variants of search-based
motion planners are widely used on autonomous vehicles [3],
[33]–[39], but how to conduct long-range navigation through
cluttered environments in a time and memory efficient man-
ner remains challenging. The approach proposed in this paper
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overcomes the disadvantages of existing search-based motion
planners through the concept of driving modes as well as a
hierarchical framework, and significantly improves the time
and memory efficiency for motion planning in long-horizon
autonomous valet parking tasks.

Real-time trajectory repairing has been approached from
various different aspects, including online heuristic up-
date [40]–[42], pruning and reconnecting sampling-based
search structures [43]–[46], and spline-based kinodynamic
search [47], [48]. Heuristic update methods are designed
for graph-based structures and are not directly applicable
in our tree-based search structure in RP-BIAGT, and the
tree pruning and reconnecting methods are less desirable
in the memory-constrained scenarios we are considering.
The repairing and replanning procedure proposed in this
paper is inspired by spline-based repairing methods, but
differs significantly in that, instead of directly conducting
kinodynamic search, we apply a hierarchical framework
which first conduct geometric shifting and then search for
dynamically feasible trajectories with the heuristic guidance
from the shifting. This not only improves the computational
efficiency but also provides a convenient criterion to decide
between trajectory repairing and replanning.

III. PRELIMINARIES

A. Problem Statement

We consider the planning problem with vehicle dynamics:

Ẋ = f(X) + g(X)u, (1)

where X ∈ X ⊂ Rnx is the state and u ∈ U ⊂ Rm

is the control input. A collision-free configuration space
Cfree ⊂ Rnc is defined as the set of configurations at
which the vehicle has no intersection with obstacles in the
environment. An admissible trajectory Xt is a solution of
system (1) with given initial and final conditions and u ∈ U ,
and a feasible trajectory is an admissible trajectory that is
also collision-free. The motion planning problem considered
in this paper is defined as follows:

Problem 3.1: Given an initial configuration X0 ∈ Cfree,
a goal configuration Xf ∈ Cfree, and system (1), find a
feasible trajectory Pt which

(I) starts at X0 and ends at Xf , while satisfying (1); and
(II) lies in the collision-free configuration space Cfree.

B. Bi-Directional A-Search Guided Tree (BIAGT)

As a variant of A*-based algorithms, Bi-Directional A-
Search Guided Tree (BIAGT) [16] is proposed to efficiently
provide feasible solutions for autonomous vehicle parking
tasks. We define a tree T = (V, E) as a union of a node
set V ⊂ Cfree and an edge set E , where E(Xi, Xj) ∈ E
represents a feasible trajectory between Xi and Xj and Cfree
is implicitly obtained by checking collisions with obstacles
in the map. Let M denote a finite set of motion primitives
pre-computed through available control actions, and Vmax

the maximum number of nodes allowed. As described in
Algorithm 1, BIAGT constructs a start tree Ts and a goal

Algorithm 1: BIAGT
1 input Cfree, X0, Xf , Vmax,M, ε
2 Ts ← (X0, ∅), Tg ← (Xf , ∅)
3 F (X0)← g(X0) + h(X0), F (Xf )← g(Xf ) + h(Xf )
4 Qs ← (X0, F (X0), Qg ← (Xf , F (Xf )
5 k ← 2, success← false
6 while k ≤ Vmax and not success do
7 Xs

best = Qs.Pop where F (Xs
best) ≤ F (X), ∀X ∈ Qs

8 Xg
best = Qg.Pop where F (Xg

best) ≤ F (X),∀X ∈ Qg

9 if d(Xs
best, Xf ) ≤ ε or d(Xg

best, X0) ≤ ε then
10 success← true

11 else if dist(Ts, Tg) ≤ ε then Connect(Ts, Tg) ;
12 else
13 (success, ns)← Expand(Ts, Cfree, Xs

best,M)
14 Compute F for new nodes and append to Qs

15 if not success then
16 (success, ng)←

Expand(Tg, Cfree, Xg
best,M)

17 Compute F for new nodes and append toQg

18 k ← k + ns + ng

19 Pt = ReturnFeasiblePath(Ts, Tg, success)
20 return Pt

tree Tg rooted from X0 and Xf respectively, and expands
them according to a cost function F (·) which sums up the
heuristic value h(·) and the arrival cost g(·). The heuristics in
BIAGT are calculated based on the Reeds-Shepp (RS) path
length [49] towards the tree’s corresponding goal without
considering obstacles. If either tree gets close to their corre-
sponding goal or the distance between two trees is smaller
than or equal to a threshold ε, then BIAGT will connect the
two trees with a dynamically feasible path. If the connection
is successful, all parents of the connection nodes are added
to the other tree to form a feasible solution trajectory and the
motion planning is viewed as successful. If the total number
of nodes on both tree reaches Vmax but a solution trajectory
is still not found, then the motion planning has failed.

IV. APPROACH

Despite BIAGT’s capability of solving short-range au-
tonomous parking problems demonstrated in [16], it in-
evitably suffers from long planning time and high memory
consumption when the task is long-range and when updated
obstacle information received from sensors invalidates the
original trajectory. In order to address these issues, in this
paper we propose Route-Planning Bi-Directional A-Search
Guided Tree (RP-BIAGT) which extends the original BIAGT
through three contributions: 1) a hierarchical framework that
provides significant performance improvement in terms of
planning time, trajectory smoothness and memory consump-
tion (Section IV-A); 2) a trajectory-repairing procedure upon
updated map information which uses geometric configuration
shifting to provide heuristic guidance as well as repairing
difficulty estimation (Section IV-B); 3) a fast replanning ap-
proach that searches for new feasible routes and trajectories
when repairing is determined to be difficult (Section IV-
C). Fig. 1 and Algorithm 2 illustrates RP-BIAGT’s overall
framework and algorithmic details respectively.
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Fig. 1: RP-BIAGT System Diagram

Algorithm 2: RP-BIAGT
1 input Cfree, X0, Xf , Vmax,M, ε, η
2 Ts ← (X0, ∅), Tg ← (Xf , ∅)
3 RP = RoutePlanning(Cfree, X0, Xf )
4 h(X0) = RPHeuristic(RP,X0, Xf )
5 h(Xf ) = RPHeuristic(RP,Xf , X0)
6 F (X0)← g(X0) + h(X0), F (Xf )← g(Xf ) + h(Xf )
7 Qs ← (X0, F (X0), Qg ← (Xf , F (Xf )
8 k ← 2, success← false
9 while k ≤ Vmax and not success do

10 Xs
best = Qs.Pop where F (Xs

best) ≤ F (X), ∀X ∈ Qs

11 Xg
best = Qg.Pop where F (Xg

best) ≤ F (X),∀X ∈ Qg

12 if d(Xs
best, Xf ) ≤ ε or d(Xg

best, X0) ≤ ε then
13 success← true

14 else if dist(Ts, Tg) ≤ ε then Connect(Ts, Tg) ;
15 else
16 Trim M if HeadingAlign(Xs

best, RP )
17 (success, ns)← Expand(Ts, Cfree, Xs

best,M)
18 Compute F for new nodes and append to Qs

19 if not success then
20 Trim M if HeadingAlign(Xg

best, RP )
21 (success, ng)←

Expand(Tg, Cfree, Xg
best,M)

22 Compute F for new nodes and append toQg

23 k ← k + ns + ng

24 Pt = ReturnFeasiblePath(Ts, Tg, success)
25 Execute Pt until new obstacles detected
26 if Pt in collision then
27 Cc ← Nodes in collision on Pt

28 (Cs, Clearancemax)← LateralShift(Cc)
29 if not all Cs or Clearancemax ≤ η then Replan;
30 else
31 (Xnew

0 , Xnew
f ,PC free

t )← ResetTask(Cc,Pt)
32 Repeat line 2− 24 with Xnew

0 , Xnew
f → Pnew

t

33 Pt ← PathConnect(Pnew
t ,PC free

t )

34 return Pt

(a) Route Planner Solution (b) RP-BIAGT Tree

(c) RP-BIAGT Solution (d) RP-BIAGT Final Motion Plan

(e) BIAGT Tree (f) BIAGT Solution

Fig. 2: Comparison of RP-BIAGT and BIAGT on Demo 14. The
green box and red box in (c) show the start and goal pose for the
vehicle respectively, and the blue lines and red lines in (b) represent
the start tree and the goal tree respectively.

A. Route Planning

A fundamental shortcoming of BIAGT is that its heuristics
only consider vehicle dynamics and not obstacle information,
which may result in tree expansions into dead ends when
feasible trajectories are long and winding. To tackle this
issue, we propose a hierarchical framework that combines
BIAGT with a high-level route planner, as illustrated through
an example parking task in Fig. 2. The route planner first
generates a three-dimensional directed graph including the
location and heading information based on the parking lot
map and the traffic direction, and then uses A∗ algorithm to
search for the shortest path between start and goal nodes on
the graph, as shown in Fig. 2(a). We refer to this shortest
path as the route planner solution route, and the nodes on
this shortest path the waypoints. These waypoints serve three
roles in RP-BIAGT: 1) the route length from a waypoint to
its corresponding goal hwaypoint is used when the low level
BIAGT computes heuristics; 2) the heading of the waypoint
closest to the parking space guides BIAGT to get out in the
correct direction; 3) the heading of the waypoints on straight
driveways are utilized to trim available motion primitives in
order to avoid unnecessary steering motions and to reduce
the number of nodes required to find a feasible trajectory.

a) Heuristic Guidance: Instead of computing heuristics
based on the RS path length to the goal, RP-BIAGT searches
for the k-nearest waypoints based on Euclidean distance to
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the current node being expanded and computes a set of
heuristics hi that add up the to-go-cost from each of the
nearest waypoints hwaypoint and their RS distance to the
current node RS(node,waypoint). The minimum of this set
of heuristic values is used as the actual heuristic of the
current node, as shown in Equation 2.

hi = RS(node,waypoint) + hwaypoint, i = 1, . . . , k

h = min
i
hi

(2)

b) Heading Constraint: Without human knowledge
baked in, motion planners often come up with trajectories
that are optimal in terms of path length but violate human
logic. As shown in Fig. 2(f) and 3(b), BIAGT solution
instructs the vehicle to drive backwards since very far away
from the parking space, which might cause confusion in
parking lots that accommodate both human drivers and
autonomous vehicles. In contrast, since the route planner
solution routes are constrained by the traffic direction, RP-
BIAGT provides a convenient interface for enforcing natural
parking behaviors. For the trees growing out of parking
spaces, RP-BIAGT defines a heading indicator that only turns
true when the heading difference between the current node
and the first waypoint outside of the parking space is smaller
than a threshold θ. Nodes on these trees will only use the first
waypoint outside of the parking space for heuristic guidance
instead of the k-nearest waypoints until the heading indicator
turns true, so that fixing heading is prioritized.

c) Motion Primitive Trimming: A crucial drawback of
BIAGT is that the number of nodes it takes to solve long-
horizon parking tasks often exceeds the memory constraint
of practical autonomous vehicles. In addition, although fine
grids of motion primitives help maneuvering the vehicle
around parking spaces, they could cause the trajectory in long
driveways to be unnecessarily winding. Therefore, in RP-
BIAGT we introduce three driving modes, Parallel, Normal
and Navigation, to distinguish and provide suitable motion
primitives for parallel parking, normal parking and forward
driving. Both Parallel and Normal modes allow forward and
backward driving, but Parallel has finer grids for motion
primitives. Navigation mode only allows forward driving and
uses longer arcs for motion primitives. Additionally, RP-
BIAGT also provides a motion primitive trimming procedure
for Navigation mode which first checks the heading of the
current node with k-nearest waypoints and then trim all the
steering primitives if the heading difference between the node
and all waypoints ahead is within a threshold ψ. This not only
avoids unnecessary steering and enhances trajectory smooth-
ness, but also helps restricting the total number of nodes
within a practical limit to satisfy the memory constraint. If
we compare Fig. 2(b)-(c) with Fig. 2(e)-(f), we can see that
RP-BIAGT utilizes tree nodes much more efficiently than
BIAGT and also generates much smoother trajectories.

B. Trajectory Repairing

Although static parking lot map information can often
be obtained offline, real-time obstacle detection and path

(a) RP-BIAGT Solution (b) BIAGT Solution

Fig. 3: Comparison of RP-BIAGT and BIAGT on Demo 12.

(a) (b)

Fig. 4: Illustration of the Repairing Criterion

repairing is essential for any robust autonomous parking
solution to accommodate small, temporary road-blocks such
as traffic cones or misplaced shopping carts. Ultimately, we
aim at integrating RP-BIAGT with sensing components for
real-time obstacle detection and parking space searching,
but in this paper, we assume updated map information can
be obtained and focus solely on motion planning without
higher level decisions involving changes to the goal. When
newly detected obstacles invalidate the original trajectory,
drivers need to choose between following the same route
(repairing) and finding a different route that reaches the same
goal (replanning). Repairing is often preferred considering
the execution time and energy consumption, but when the
driveway becomes very narrow due to large or inconveniently
placed new obstacles, long planning time and high collision
risk makes repairing undesirable even if it is feasible. There-
fore, it is important to maintain a “repairing criterion” to
intelligently decide between repairing and replanning.

In this paper, we propose a geometric clearance check pro-
cedure to provide a rapidly computable repairing criterion,
as illustrated with an example in Fig. 4. A new obstacle is
detected when the vehicle drives to configuration A, hence
it searches for all the nodes along the original trajectory that
collide with the new obstacle and finds the corresponding
lateral axis perpendicular to the heading direction for each
node. It then shifts the configuration along the lateral axis
in both directions in search of collision-free shifts, and will
rotate the axis to repeat this procedure if none was found. We
define the maximum distance between collision-free shifts
(in Fig. 4 the distance between configuration C and D) as
the clearance. The RP-BIAGT repair planner repeats this
procedure for all nodes in collision. If for any node collision-
free shifts don’t exist or the clearance is smaller than a
threshold η, then the repairing criterion is not met and RP-
BIAGT will go directly to replanning. Otherwise, RP-BIAGT
would repair the section of the original trajectory that collides
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TABLE I: Clearance and Repairability for Demo 25

Obst-
acle
Wid-

th

Theor-
etical
Clear-
ance1

# of Nodes
without
Shifts2

Minimum
Clearance

Average
Clearance3

# of Nodes
to Repair4

l = 6 l = 7 l = 6 l = 7 l = 6 l = 7 l = 6 l = 7
2.5 1.19 0 0 0.60 0.60 1.43 1.38 326 1306
2.6 1.09 0 0 0.45 0.45 1.31 1.26 509 6276
2.7 0.99 0 0 0.30 0.30 1.23 1.16 1238 5146
2.8 0.89 0 0 0.30 0.30 1.18 1.14 7226 13561
2.9 0.79 0 0 0.15 0.15 1.06 1.01 5199 12782
3 0.69 0 0 0.00 0.00 0.99 0.92 14603 12639

3.1 0.59 0 0 0.00 0.00 0.47 0.42 13683 17839
3.2 0.49 0 0 0.30 0.28 0.44 0.37 15233 24272
3.3 0.39 0 0 0.15 0.15 0.34 0.30 30000 24784
3.4 0.29 0 0 0.00 0.00 0.27 0.22 30000 30000
3.5 0.19 0 0 0.00 0.00 0.19 0.12 30000 30000
3.6 0.09 3 3 0.00 0.00 0.17 0.12 30000 30000
3.7 -0.01 4 5 0.00 0.00 0.15 0.12 30000 30000
1 Theoretical clearance is driveway width (6 m) minus obstacle width,

minus the gap between obstacle and driveway border (0.5 m), and minus
vehicle width (1.81 m). In this table, obstacle width, obstacle length (l)
and clearance are all in meters (m).

2 Among the nodes on the original trajectory that are in collision, how
many of them don’t have collision-free shifts.

3 Minimum clearance and average clearance are the minimum and average
of the clearance values respectively for all the collision nodes on the
original trajectory reported by RP-BIAGT.

4 Maximum number of nodes allowed is 30000.

with the new obstacles and connect it with the collision-
free sections. In practice, it is usually infeasible to directly
connect the immediate neighbors of the collision nodes due
to vehicle dynamics, thus in RP-BIAGT, we propose to start
repairing m nodes away from the collision nodes, where m
is a customizable parameter that depends on the vehicle size
and the arc lengths of motion primitives.

In order to analyze the relationship between clearance
and repairing difficulty, we experiment on two demo tasks
with additional obstacles of different sizes. For brevity, we
only show the results for Demo 25 with two sets of lengths
(l = 6 m and l = 7 m) and thirteen sets of widths in
Table I. In all experiments in this paper, we conduct discrete
shifts with step size 0.15 m and allow for ±10◦/20◦heading
changes when lateral shifting fails to find collision-free
configurations. From Table I we can see that for Demo 25,
when the average clearance is lower than 1.2 m, the number
of nodes for repairing the trajectory starts to exceeds 5000,
the ideal threshold for memory consumption for the vehicles
we target at. When the clearance drops below 0.3 m or when
some nodes can’t find collision-free shifts, it starts to become
infeasible to repair within 30000 nodes. It is also noted that
as obstacle grows wider, the minimum clearance among all
collision nodes first drops to zero and then increases before it
drops to zero again. This is because in our experiments, when
RP-BIAGT can find collision-free shifts without changing
heading, it will skip the heading rotation step and report the
clearance value even if there’s only one collision-free shift.
However, it might find more collision-free shifts and show a
non-zero clearance when it rotates the heading direction. A
similar trend is also observed in experiments for Demo 28.

In addition to providing the clearance for the repairing
difficulty test, these geometric shifts also provide the repair

(a) Demo 25: RP-BIAGT Repair (b) Demo 25: BIAGT Repair

(c) Demo 28: RP-BIAGT Repair (d) Demo 28: BIAGT Repair

(e) Demo 25: RP-BIAGT Replan (f) Demo 25: BIAGT No Solution

(g) Demo 28: RP-BIAGT Replan (h) Demo 28: BIAGT Replan

Fig. 5: Comparison between RP-BIAGT and BIAGT on trajectory
repairing and replanning tasks. (a)-(d) show demo 25 and 28 with
newly detected obstacles when trajectories can be easily repaired,
and (e)-(h) demonstrate cases where repairing is difficult and the
replanning procedure is triggered. In demo 25, BIAGT is unable to
find a new plan within 30000 nodes, thus the trees are shown in (f)
instead of the solution trajectory.

planner with heuristic guidance. When the repairing criteria
are satisfied, the median of the collision-free shifts for each
collision node are used in Equation 2 instead of the original
route planner waypoints for heuristic calculation. Fig. 5(a)-
(d) qualitatively compare the performance of the RP-BIAGT
repair planner and BIAGT, and we can see that RP-BIAGT
is able to provide smoother trajectories for path repairing.

C. Replanning
When RP-BIAGT determines that it is difficult to repair

the original trajectory, it will remove the directed graph edges
that collide with the new obstacles and use route planner to
find a new route based on the new graph. It then follows
a similar procedure as described in Section IV-A to find a
dynamically feasible trajectory along this route. The main
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difference in the replanning procedure is that we use heading
constraints for all start trees even if they are not growing
out of parking spaces. This is because rerouting typically
involves turning to the opposite of the original driving
direction, which is especially challenging for heuristic-driven
motion planners. Without heading constraints, these planners
often instruct the vehicle to drive backwards all the way to
the goal, which is optimal from the path length point of view
but very undesirable considering human logic. Therefore, we
use heading constraints described in Section IV-A.0.b on all
start trees in addition to the goal trees that grow out of
parking spaces to ensure natural driving behaviors.

V. EMPIRICAL EVALUATION

We test RP-BIAGT’s initial planning, repairing and re-
planning performance in various parking tasks in simulation
environments, and the comparison with BIAGT in terms of
planning time and node number is shown in Table II and
III. All the experiments are run on a 6-core Intel i7 3.7GHz
desktop with Matlab R2020a.

RP-BIAGT’s initial planning performance is tested on 19
driving tasks in two different parking lots. All tasks are
between one parking space and one exit, and are categorized
based on the distance between start and goal and the driving
direction. The tasks with their goal inside parking spaces are
called Park-In tasks and the ones with goals at exits are called
Drive-Out tasks. All perpendicular parking spaces require the
front of the vehicle to be at the opening of the parking space,
and the Park-In tasks are much more challenging than the
Drive-Out tasks since they involve changes of the heading
direction at the parking space. From Table II we can see that
in most demos, especially the long-range ones, RP-BIAGT
uses significantly fewer nodes to find a solution compared
to BIAGT. Although RP-BIAGT takes more time per node
because it goes through the hierarchical procedure of finding
k-nearest waypoints and computing a set of heuristics, it
almost always takes less time for the same task due to the
significant reduction of node numbers.

We evaluate RP-BIAGT’s performance in terms of repair-
ing and replanning on four of the demo tasks by adding new
obstacles after the vehicle drives out. The testing vehicle
is 1.81 m wide, and the repairing performance shown in
Table III is tested on tasks with a 3 m passage after adding
the new obstacle, thus trajectory repairing should be feasible.
The replanning performance shown in Table III is tested on
tasks with larger new obstacles where the passage becomes
1 - 1.5 m wide and trajectory repairing is infeasible. From
Table III we can see that BIAGT is rarely able to find a new
trajectory for replanning within 30000 nodes, and compared
to RP-BIAGT, it also tend to take a larger number of nodes
to repair the trajectory in cases with smaller new obstacles.

VI. DISCUSSION

This paper presents RP-BIAGT, an efficient search-
based motion planning approach that can rapidly produce
dynamically-feasible and memory-efficient solutions for au-
tonomous vehicle valet parking scenarios. Through a hier-

TABLE II: RP-BIAGT and BIAGT Comparison

Demo
No.

Demo Type RP-BIAGT BIAGT
Long or

Short
Range

Park-In
or Drive-

Out

Planning
Time (s)

# of
Nodes

Planning
Time (s)

# of
Nodes

11 Short In 0.81 1129 0.88 1417
12 Short In 0.55 637 0.65 1229
13 Long In 0.44 446 8.76 10720
14 Long In 0.56 660 11.04 13132
15 Long In 0.95 912 1.66 1562
16 Long In 0.99 1145 3.10 4557
17 Long In 0.79 953 35.38 29473
18 Long In 0.42 460 8.44 9781
19 Long Out 0.19 194 2.56 4276
20 Long In 0.98 702 1.97 1446
21 Long Out 0.34 424 36.82 30000*
22 Long Out 0.39 339 32.16 30000*
23 Short In 0.92 915 0.99 1664
24 Long In 0.51 593 0.19 373
25 Long In 1.69 2092 2.01 3637
26 Short Out 0.39 599 0.20 351
27 Long Out 0.43 597 0.89 1729
28 Long Out 0.42 427 2.42 4197
29 Long In 0.78 860 2.01 3757

* The maximum number of nodes allowed is 30000, and BIAGT failed
to find feasible trajectories within 30000 nodes in these cases.

TABLE III: Path Repairing and Replanning Comparison

Demo
No.**

Repair Replan
RP-BIAGT BIAGT RP-BIAGT BIAGT

Time
(s)

# of
Nodes

Time
(s)

# of
Nodes

Time
(s)

# of
Nodes

Time
(s)

# of
Nodes

14 0.96 900 0.69 1234 1.39 1598 35.52 30000*
25 0.37 326 2.31 3510 0.66 542 35.66 30000*
27 0.13 147 0.29 287 0.35 352 39.76 30000*
28 0.41 339 1.03 1049 0.31 324 14.38 13763

* The maximum number of nodes allowed is 30000, and BIAGT failed
to find feasible trajectories within 30000 nodes in these cases.

** For the same demo, the repairing task and the replanning task have the
same basic map but different new obstacles. The new obstacles in the
replanning tasks are relatively larger so that the repairing criterion will
inform RP-BIAGT to go directly to the replanning procedure instead
of attempting to repair.

archical framework that combines a high-level map-aware
route planner and a low-level dynamics-aware bi-directional
search tree, RP-BIAGT incorporates information on driving
direction, environment obstacles and vehicle dynamics in its
heuristics in order to achieve time and memory efficiency. In
addition to providing a convenient interface for incorporating
human knowledge and enforcing natural driving behaviors
through its hierarchical framework, RP-BIAGT also accom-
modates new obstacles detected during execution with a fast
geometric shifting procedure that estimates the clearance and
decides between repairing and replanning. When conducting
trajectory repairing, the geometric shifts can also replace the
original route planner solution as the new heuristic guidance
to facilitate rapid repairing. In future research, we hope to
enhance RP-BIAGT’s performance by improving the time-
consuming components through supervised learning, includ-
ing tree connection and repairability test. Furthermore, we
also hope to replace the discrete-time Reeds-Shepp motion
primitives with continuous curvature control primitives to
allow for smoother trajectories during execution.
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