
Fast-reactive probabilistic motion
planning for high-dimensional robots

Journal Title
XX(X):1–28
c©The Author(s) 2019

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Siyu Dai, Andreas Hofmann and Brian C. Williams

Abstract
Many real-world robotic operations that involve high-dimensional humanoid robots require fast-reaction to plan
disturbances and probabilistic guarantees over collision risks, whereas most probabilistic motion planning approaches
developed for car-like robots can not be directly applied to high-dimensional robots. In this paper, we present
probabilistic Chekov (p-Chekov), a fast-reactive motion planning system that can provide safety guarantees for high-
dimensional robots suffering from process noises and observation noises. Leveraging recent advances in machine
learning as well as our previous work in deterministic motion planning that integrated trajectory optimization into a
sparse roadmap framework, p-Chekov demonstrates its superiority in terms of collision avoidance ability and planning
speed in high-dimensional robotic motion planning tasks in complex environments without the convexification of
obstacles. Comprehensive theoretical and empirical analysis provided in this paper shows that p-Chekov can effectively
satisfy user-specified chance constraints over collision risk in practical robotic manipulation tasks.

Keywords
Motion planning, manipulation, risk-aware planning, machine learning

1 Introduction

Robotic systems deployed in the real world have to contend
with a variety of challenges: wheels slip for mobile robots,
lidars do not reflect off glass doors, currents and turbulence
disturb underwater vehicles, and humans in the environment
move in unpredictable manners. However, many state-of-
the-art robots, with inevitable uncertainties from various
sources including approximate models of system dynamics,
imperfect sensors, and stochastic motions caused by
controller noise, are not yet ready to handle these challenges.
Although nowadays feedback controllers can take care of
a large portion of uncertainties during the execution phase,
the remaining deviations can still be problematic, especially
for robots operating in hazardous environments or systems
that collaborate closely with humans. One representative
example is a manipulator mounted on an underwater vehicle,
which faces not only the disturbances from currents and inner
waves, but also the base movements caused by the interaction
between manipulators and the vehicle on which they are
mounted. A collision accident of such manipulators deployed
in underwater scientific exploration tasks can often cost
millions of dollars. Another typical example is a domestic
assistive robot surrounded by elder people and children,
which needs to be very careful about collision avoidance.
Therefore, in those tasks, it is important that the motion
planner can take uncertainties into account and can react
quickly to plan interruptions.

Fast-reactive risk-aware motion planning for high-
dimensional robots like humanoid robots, however, is a very
challenging task. Unlike car-like robots, a typical robotic
manipulator can have seven degrees-of-freedom (DOFs),
and this high-dimensionality makes it extremely difficult to
quantify uncertainties into collision risks and to make safe

motion plans in real time. Existing systems that tackle the
risk-aware motion planning problem (Van Den Berg et al.
2012; Luders et al. 2013; Ono et al. 2013; Sun et al. 2015;
Chen et al. 2017; Axelrod et al. 2018; Luo et al. 2019) lack
the ability of efficiently handling high-dimensional robots
and non-convex environments. In order to address these
difficulties, we propose probabilistic Chekov (p-Chekov), a
combined sampling-based and optimization-based approach
that takes advantage of the fact that most obstacles in a
lot of practical motion planning tasks are static and only a
small number of objects are dynamic during deployment.
In these cases, we can construct sparse roadmaps based on
our prior knowledge about the static environment to cache
feasible trajectories offline, so that during plan execution,
we only need to optimize solution trajectories according to
new observations (Dai et al. 2018; Orton et al. 2019) and
adjust plans to satisfy safety requirements (Dai et al. 2019).
Combining ideas from risk allocation (Ono and Williams
2008a,b) and supervised learning, p-Chekov can effectively
reason over uncertainties and provide motion plans that
satisfy constraints over the probability of plan failure, i.e.
chance constraints (Ono and Williams 2008b).

In this paper, we first provide a comprehensive review
of the relevant literature and distinguish our approach
in four different aspects, and then describe the problem
formulation and test environments. Then in Section 5,
we provide extensive empirical results to demonstrate

Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, USA

Corresponding author:
Siyu Dai, 32 Vassar Street, Cambridge, MA, 02139, USA.
Email: sylviad@mit.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

that our deterministic Chekov approach can overcome
the shortcomings of both sampling-based planners and
optimization-based planners and achieve fast-reaction for
high-dimensional motion planning problems in practical
environments. This deterministic Chekov approach forms
a core component in p-Chekov that generates nominal
trajectories in real-time, and lays an essential foundation
for the fast-reaction of the risk-aware planning approach.
Section 6 illustrates the main technical components in p-
Chekov planner, including the estimation of robot state
probability distributions during execution, two different
approaches for collision probability estimation given robot
state distributions, and the allocation and reallocation of
risk bounds during planning phase and execution phase.
Section 7 then demonstrates the performance of p-Chekov
empirically and compares the performance of the two
collision probability estimation approaches. Finally we
summarize the main contributions of p-Chekov and discuss
potential directions for future research.

We have previously presented some components of
deterministic Chekov (Dai et al. 2018) and p-Chekov (Dai
et al. 2019). The main contributions of this paper in addition
to our previous publications include: 1) a more detailed
theoretical and empirical analysis on the deterministic
Checkov approach proposed by Dai et al. (2018) and
the quadrature-based p-Chekov approach proposed by Dai
et al. (2019); 2) an iterative risk allocation (IRA) approach
for plan improvement during the execution phase of p-
Chekov, and its comparison with the planning phase risk
reallocation approach; 3) an analysis on the performance
of different machine learning algorithms for estimating
trajectory collision risks; 4) a learning-based p-Chekov
approach that can overcome quadrature-based p-Chekov’s
limitations in planning speed and achieve fast-reaction as
well as high chance constraint satisfaction rate for real-
world high-dimensional robotic motion planning tasks.
To the author’s best knowledge, learning-based p-Chekov
is the first motion planning and execution system that
can provide chance-constrained motion plans for high-
dimensional robots in complex environments in real time.

2 Related work

2.1 Fast-reactive motion planning
Approaches for robotic motion planning usually fall into
three categories: search-based (Stentz 1994; Koenig and
Likhachev 2005; Cohen et al. 2010), sampling-based
(LaValle 1998; Bohlin and Kavraki 2000; Karaman and
Frazzoli 2011) and optimization-based (Kalakrishnan et al.
2011; Zucker et al. 2013; Schulman et al. 2014). A typical
way search-based (A* like) motion planners formulate their
algorithms is through discretizing the configuration space
into grids and applying search algorithms to find a valid
trajectory from the start to the goal. Despite that search-based
motion planners can guarantee completeness and optimality,
the discretization of the configuration space means the
computational cost could be very high for complicated high-
dimensional planning tasks.

Sampling-based planning is another powerful approach
that randomly explores a subset of the configuration space
(C-space) while keeping track of the search progress.

Although sampling-based planners, e.g. rapidly exploring
random trees (RRTs), are able to solve some difficult
motion planning tasks with the guarantee of probabilistic
completeness, their performance in complicated high-
dimensional planning tasks is highly restricted by the
selection of sampled nodes, and their planning time is often
a major concern. In contrast, optimization-based motion
planning shows its advantage in planning speed because
they operate on the space of trajectories and conduct a
fast but local search instead of a global search. However,
this also means that the performance of optimization-based
planners, especially numerical trajectory optimizers which
often suffer from the problem of getting stuck in high-cost
local optima, can be very sensitive to the quality of the initial
seed trajectory, and deeply infeasible initializations can often
cause plan failures. Probabilistic inference has also been
applied to robotic motion planning (Mukadam et al. 2018),
but similar to optimization-based approaches, inference-
based planners are also very sensitive to initializations.

One way to achieve fast motion planning with high success
rate is to combine optimization-based motion planners with
offline global planners, such as sampling-based probabilistic
roadmaps, which can provide optimization-based planners
high-quality initializations with the help of offline pre-
computation. The approaches Luna et al. (2013) and
Campana et al. (2015) proposed can conduct online path
shortening for plans generated by sampling-based planners,
but the effect of trajectory optimization in their approaches is
limited to trajectory smoothing and shortening, whereas real-
time obstacle avoidance and differential constraints were
not incorporated. Park et al. (2015) presented a combined
roadmap and trajectory optimization planning algorithm.
However, their additional focus on avoiding singularities in
redundant manipulators and meeting Cartesian constraints
resulted in relatively long planning times.

In this paper, we propose a fast-reactive motion
planning frame work for high-dimensional robots that
combines obstacle-aware trajectory optimization with sparse
probabilistic roadmaps in the C-space. Sparse global
roapmaps are the core to fast reaction and can provide
motion plans that are guaranteed to be collision-free,
while obstacle-aware local optimization helps smoothen
and shorten the trajectories without introducing collisions.
Covariance Hamiltonian Optimization for Motion Planning
(CHOMP) (Zucker et al. 2013), Stochastic Trajectory
Optimization for Motion Planning (STOMP) (Kalakrishnan
et al. 2011), Incremental Trajectory Optimization for
Real-time Replanning (ITOMP) (Park et al. 2012) and
TrajOpt (Schulman et al. 2014) are four state-of-the-
art trajectory optimization approaches. Our proposed
framework could in theory work with any obstacle-aware
trajectory optimizer, but in this paper we demonstrate
its performance with TrajOpt out of three considerations.
First, the convex-convex collision checking method used
in TrajOpt can take accurate object geometry into
consideration, shaping the objective to enhance the ability
of getting trajectories out of collision. In contrast, the
distance field method used in CHOMP and STOMP
consider the collision cost for each exterior point on a
robot, which means two points might drive the objective
in opposite direction. Second, the sequential quadratic

Prepared using sagej.cls

Dai et al. 3

programming method used in TrajOpt can better handle
deeply infeasible initial trajectories than the commonly
used gradient descent method (Schulman et al. 2013).
Third, customized differential constraints, such as velocity
constraints and torque constraints, can be incorporated in
TrajOpt. This is an important consideration for the p-
Chekhov system presented in this paper which aims at
building a motion execution system that incorporates system
dynamics models and control policies while respecting
additional temporal constraints.

2.2 Chance-constrained motion planning
Existing motion planners that take uncertainties into
consideration include two classes: some are safety-driven
and provide motion plans that minimize the collision
risks (Van Den Berg et al. 2011; Patil et al. 2015,
2014; Xiao et al. 2020), and others, also called chance-
constrained motion planners (Ono et al. 2013), seek the
optimal plans that can satisfy a user-specified constraint
over the probability of collision. In this paper, we focus
on providing chance-constrained motion plans for high-
dimensional robots in real time. Many uncertainty-aware
motion planners are based on Markov Decision Processes
(MDPs) (Thrun et al. 2005; Burlet et al. 2004; Alterovitz
et al. 2007), and an extension of MDP, Partially Observable
MDP (POMDP), is often applied to address the sensing
uncertainties in robotic motion planning tasks (Kurniawati
et al. 2008; Van Den Berg et al. 2012; Luo et al.
2019). Despite their wide application, most of them require
discretization of the state space. Even for extensions that
can handle continuous planning domains, tractability is
still a common issue due to the need of partitioning or
approximation of the continuous state space (Ono et al.
2013).

Another class of probabilistic planners formulates motion
planning into an optimization problem through approaches
such as Disjunctive Linear Program (DLP). Blackmore
et al. (2006) introduced a DLP-based approach that can
perform obstacle avoidance under uncertainties, Blackmore
et al. (2010) described a Mixed Integer Linear Programming
(MILP) formulation of the robust path planning problem
which approximates chance constraints with a probabilistic
particle-control approach, Ono et al. (2013) proposed the
probabilistic Sulu planner (p-Sulu) which performs goal-
directed planning in a continuous domain with temporal
and chance constraints, and Lee et al. (2013) adopted
trajectory optimization in belief space and formulated
collision avoidance constraints using sigma hulls. However,
since p-Sulu encodes feasible regions with linear constraint
approximations, it inevitably suffers from the exponential
growth of computation complexity when applied in
complicated 3D environments or tasks with multiple agents.
Additionally, both linear approximations and sigma hulls
place restrictions on robot and environment geometry
and also introduce inaccuracies in collision probability
estimation.

Uncertainty-aware extensions of search-based (Lenz et al.
2015; Chen et al. 2017) and sampling-based (Luders et al.
2010; Bry and Roy 2011; Luders et al. 2013; Liu and
Ang 2014; Sun et al. 2015) planners are also popular
in the motion and path planning field. However, their

applications are often limited to car-like robots in simplified
environments due to their disadvantages in planning speed
and collision probability estimation ability for high-DOF
robots in real-world complex environments. When the robot
has high dimensionality, the collision checking happens in
the 3D workspace, whereas the motion planning happens
in the high-dimensional C-space. Mapping the collision-
free workspace into the C-space is nontrivial, which hence
becomes another barrier for high-dimensional risk-aware
motion planning.

2.3 Collision risk estimation
The estimation of trajectory collision probability has been
widely investigated in the motion planning field, yet no
perfect solution has been proposed due to its inherent
difficulties. In order to approach this problem, many
approximations have been used, including the discretization
of time and the convexification of obstacles. For low-
dimensional planning tasks in convex environments, the
estimation of collision risks at discrete waypoints is
relatively straightforward. In the p-Sulu planner presented
by Ono et al. (2013), each boundary of each obstacle
is formulated into a linear constraint, and the half-spaces
that represent those linear constraints form the collision-
free regions. In this way, the waypoint collision probability
becomes the probability of violating any of the linear
constraints, and can be solved through linear program (LP)
solvers. A very different idea is to take advantage of
confidence intervals, which are ellipses and ellipsoids for
Gaussian distributions (Van Den Berg et al. 2011). If the
configuration space is 2D, then the maximum factor by
which the elliptical confidence interval can be scaled before
it intersects obstacles gives an indication of the collision
probability at that configuration, where the scale factor can
be computed as the Euclidean distance to the nearest obstacle
in the environment. Patil et al. (2012) further investigate this
idea and account for the fact that the collision probability at
each step along a trajectory is conditioned on the previous
steps being collision-free. They propose that the a priori
state probability distributions for different waypoints along
a trajectory can be truncated to better reflect the actual
collision probabilities.

However, it is nontrivial to extend the aforementioned
approaches to high-dimensional planning tasks. Obstacles
defined in workspace can not be directly mapped into a
6-DOF or 7-DOF C-space in closed form (Choset 2005),
hence the feasible region idea (Ono et al. 2013) and
the confidence interval scaling idea (Van Den Berg et al.
2011) can not be easily applied. Sun et al. (2016) pointed
out a key relation between workspace geometry and C-
space geometry: configuration q lies on the boundary of
a C-space obstacle if and only if the workspace distance
between the obstacle and the robot configured at q is
zero. Based on this relation, Sun et al. (2016) proposed
an approach that looks for the point on the boundary
of C-space obstacles that is closest to the robot’s mean
configuration by calculating the gradient of the workspace
signed-distance field. Although this approach builds an
important bridge between workspace obstacles and C-space
obstacles, it relies on the assumption that the geometries of
the C-space obstacles are locally convex. Since p-Chekov

Prepared using sagej.cls

4 Journal Title XX(X)

aims at solving high-dimensional motion planning problems
in 3D complex environments where obstacles maintain
their original non-convex shapes, we explore two different
ideas for estimating waypoint collision risks that overcome
the limitations of the aforementioned methods: one relies
on a quadrature-based sampling method to mitigate the
inaccuracy of random sampling and to avoid the difficulty of
mapping between C-space and workspace (quadrature-based
p-Chekov), and the other leverages regression methods with
function approximators to learn risk distributions through
offline sampling and to make predictions during online
planning queries (learning-based p-Chekov).

2.4 Machine learning in motion planning
Machine learning approaches are still not widely applied
in robotic motion planning. Existing applications include
guiding the exploration of sampling-based motion planners
using nearest neighbor and adaptive sampling (Atramentov
and LaValle 2002; Arslan and Tsiotras 2015; Ichter et al.
2018), accelerating collision detection through supervised
classification (Pan and Manocha 2016; Pan et al. 2017), and
pursuing end-to-end motion planning through learning from
demonstration (Wang et al. 2016; Pfeiffer et al. 2017; Ha
et al. 2018). To the author’s best knowledge, this paper is the
first application of learning-based methods on the collision
risk estimation problem for probabilistic motion planning
systems. We explore the real-time collision risk estimation
performance of different machine learning algorithms with
different structures in chance-constrained motion planning
tasks for robotic manipulators. It is shown that neural
networks with appropriate structures can efficiently generate
accurate predictions on collision risks in the environments
they are trained in. The experiment results in this paper
show that p-Chekov with neural networks as collision risk
estimation component performs significantly better than the
quadrature-based p-Chekov in terms of planning speed.

3 Problem statement
We define a disturbance as an unexpected change to task
goals, environment, or robot state. It may be due to an actual
physical change, or a change in the estimated state of the
environment or robot. Here we distinguish between severe
disturbances and small disturbances. Severe disturbances
refer to the ones that will cause significant and qualitative
plan changes, such as changes of the planning goal, the
movement of some obstacles that obstructs the original plan,
or a strong external force that results in large deviations from
the desired trajectory and the feedback controllers can’t get
the robot back on track due to actuation limits. On the other
hand, small disturbances are mainly caused by process noises
and observation noises, and the control inputs within limit
can get the robot back to the desired trajectory. In practice,
motion planners should account for the risk of potential
plan failure caused by small disturbances, and react fast
and naturally to severe disturbances which would necessitate
plan adjustment.

P-Chekov solves robotic motion planning problems
under uncertainty with a guaranteed success probability,
considering temporal, spatial and dynamical constraints.
Under process and observation noises, the collision rate

during plan executions should not exceed a user specified
chance constraint. The resulting motions should be locally
optimal or near-optimal according to a specified objective
function, which may optimize a variety of characteristics
such as path length or control effort. P-Chekov’s real-time
planning feature is key to providing robots the capability
of operating effectively in unstructured and uncertain
environments.

3.1 Model definition
Let X = Rnx denote the robot state space and U = Rnu

the system control input space, where nx and nu are the
dimensions of the state space and the control input space
respectively. Consider a discretized series of time steps
t = 0, 1, 2, . . . , T with a fixed time interval ∆T , where the
number of time steps T is a finite integer. Let xt ∈ X
denote the robot state at time step t. We assume applying a
control input ut ∈ U at time step t will bring the robot from
state xt ∈ X to xt+1 ∈ X , according to a given stochastic
dynamics model:

xt = f(xt−1,ut−1,mt), mt ∼ N (0,Mt), (1)

where mt is the zero-mean Gaussian distributed process
noise at time step t with a given covariance matrix Mt. mt

can be modeled based on the prior knowledge about robot
controllers. Function f governs the robot dynamics and is
assumed to be either linear or can be well approximated
locally by its linearization.

The robot states are observed by taking a measurement
at each time step t, denoted as zt. We assume that
measurements are provided by noisy sensors according to a
stochastic observation model:

zt = h(xt,nt), nt ∼ N (0, Nt), (2)

where nt is the zero-mean Gaussian distributed observation
noise at time step t with a given covariance matrix Nt.

For each specific planning task, a start state xstart and a
goal state xgoal or a convex goal region X goal will be given.
Let x0 ∈ X denote the initial state of the robot that follows a
Gaussian distribution with mean xstart and covariance matrix
Σx0 :

x0 ∼ N (xstart,Σx0
). (3)

An initial condition is defined as a combination of xstart and
Σx0

. A trajectory Π is defined as a sequence of nominal
robot states and control inputs (x∗0,u

∗
0, . . . ,x

∗
T) that satisfies

the deterministic dynamics model x∗t = f(x∗t−1,u
∗
t−1, 0) for

0 < t ≤ T . We assume that an objective function J(Π) will
be specified for each planning task, which can implement
planning goals such as minimizing trajectory length.

3.2 Constraint definitions
A valid solution provided by p-Chekov should satisfy
temporal constraints, chance constraints over collision risks,
goal state constraints, control input constraints, and system
dynamics constraints specified by the robot model. A
temporal constraint defines an upper bound τ on the
execution duration of a trajectory:

Prepared using sagej.cls

Dai et al. 5

T ×∆T ≤ τ. (4)

We assume a joint collision chance constraint with bound
∆c ∈ [0, 1] will be given for each planning task, which
specifies the allowed probability of collision failure. Let
Ci denote the no-collision constraint for each obstacle i =
1, . . . , N , then the probability of colliding with obstacle i
is P (Ci). The collision chance constraint over an entire
trajectory can then be expressed as:

P

(
N∨
i=1

Ci

)
≤ ∆c. (5)

The control input constraint requires that u∗t ∈ U ,∀t =
1, . . . , T . The system dynamics constraints require that the
robot states at each time step along the trajectory are within
the robot state space X , and the state transitions between
adjacent time steps satisfy the deterministic system dynamics
model:

x∗t = f(x∗t−1,u
∗
t−1, 0) ∈ X , ∀t = 1, . . . , T. (6)

3.3 Problem definition
Problem 1 defines the constrained optimization problem
solved by p-Chekov. It aims at finding a feasible trajectory
Π that minimizes the given objective J(Π) while satisfying
the chance constraint and temporal constraint. The solution
trajectory Π should satisfy the initial condition and the robot
dynamics model, and the control inputs along the trajectory
should fall into the control input space. If a C-space goal
pose xgoal is given, the robot configuration at the final time
step should be at xgoal; on the other hand, if a convex goal
region of the workspace end-effector pose X goal is specified,
then the end-effector should be in X goal at the end of Π.

Problem 1.

minimize
Π

J(Π)

subject to x0 ∼ N (x̂0,Σx0
)

xt = f(xt−1,ut−1,mt), 0 < t ≤ T
zt = h(xt,nt), 0 < t ≤ T
mt ∼ N (0,Mt), 0 < t ≤ T
nt ∼ N (0, Nt), 0 < t ≤ T
xt ∈ X , 0 < t ≤ T
ut ∈ U , 0 < t ≤ T
x∗T = xgoal or x∗T ∈ X goal

P

(
N∨
i=1

Ci

)
≤ ∆c

T ×∆T ≤ τ

(7)

4 Experiment setup
In this paper, four practical simulation environments are
used in the experiments on different motion planners: a
“tabletop with a pole” environment, a “tabletop with a
container” environment, a “shelf with boxes” environment
and a “kitchen” environment (Dai et al. 2018), as shown in

Figure 1. We choose environments that are representatives
of different application domains rather than using an
environment with randomly-placed obstacles because our
goal is to develop a motion planner that operates quickly
and provides short paths for real world applications. The
kitchen environment is adapted from the TrajOpt package,
whereas, we designed the remaining three. The “tabletop
with a pole” environment, shown in Figure 1-(a), is a simple
tabletop pick-and-place task environment, with a slender
pole in the middle of the table and a box on each side of
the pole. Empirical results show that planning queries in this
environment are relatively easy for all the tested planners.
The “tabletop with a container” environment is similar, but
with a large container on the table with boxes both inside
and outside of it, as shown in Figure 1-(b). The “kitchen”
environment, shown in Figure 1-(d), models a typical kitchen
scenario which is common in household domains. The “shelf
with boxes” environment, shown in Figure 1-(c), is a 7-
level shelf environment with boxes on each level of the
shelf, which is a common scenario in the logistic application
domain. This scenario is known to be hard for all the planners
because of the relatively large total number of obstacles and
the narrow space between different layers of the shelf.

For each environment, we generate 5000 feasible planning
queries by randomly sampling start and target end-effector
pose pairs that are collision-free and kinematically feasible.
For each experiment trial, planners are provided with
the starting C-space position and the goal end-effector
pose. We specify the goal in workspace to give planners
the opportunity to find different C-space solutions to the
planning problem. We have ensured that all test queries have
a feasible solution by executing all the planners on each test
case, and re-sampling start and goal poses when no planner
could find a solution. The Baxter robot (RethinkRobotics
2012) with its 7-DOF left manipulator is used as the
experiment testbed. All the experiments shown in this paper
are conducted on a 10-core Intel i7 3.0 GHz desktop with
64 GB RAM.

We noticed that the TrajOpt package also provides a
“swept-out volume” method in addition to their discrete-
time collision costs approach which only takes into account
waypoint collisions, in order to ensure continuous-time
safety when executing the planned trajectories (Schulman
et al. 2013). However, during our experiments we found out
that collisions can still occur on the edges between waypoints
even when the continuous-time collision cost is utilized, and
it is not obvious how to use TrajOpt’s reported collision cost
to detect collisions consistently since large cost values can
indicate either an actual collision or simply the trajectory
being close to some obstacles. Hence for the sake of time-
efficiency, we use TrajOpt with discrete-time collision costs,
and implement an independent collision checking process to
evaluate continuous-time safety on solution trajectories. In
particular, we interpolate 100 intermediate points between
each pair of adjacent waypoints and check collisions on
each of them using OpenRAVE. For our work, we assume
this fine-grained discrete-time collision test can approximate
continuous-time safety sufficiently well.

Prepared using sagej.cls

6 Journal Title XX(X)

Figure 1. Simulation Environments for Motion Planner Evaluation Experiments

(a) The “tabletop with a pole”
environment

(b) The “tabletop with a
container” environment

(c) The “shelf with boxes”
environment

(d) The “kitchen” environment

5 Fast-reactive motion planning approach:
deterministic Chekov

Real-world robotic systems usually cannot spend an
unbounded amount of time searching for an optimal motion
plan – a plan that might soon be invalidated by the
next sensor reading or a slipping wheel. The problem
of moving a robot safely and efficiently in uncertain
environments, however, is a challenging one. In this section,
we propose a roadmap-based fast-reactive motion planning
approach called deterministic Chekov in order to address this
issue. We first describe the deterministic Chekov approach
in Section 5.1, then present a systematic evaluation of
several popular motion planners in typical manipulation
scenarios in Section 5.2, including the basic version of
TrajOpt (Schulman et al. 2013) with straight-line C-space
initializations, BasicRRT from OpenRAVE, as well as
LazyPRM (Bohlin and Kavraki 2000), PRM* (Karaman and
Frazzoli 2011) and RRT* (Karaman and Frazzoli 2011) from
the Open Motion Planning Library (OMPL). The evaluation
exposes issues including long planning time and high failure
rate, thus in Section 5.3 we demonstrate the performance
of our approach which addresses the aforementioned issues.
All experiments are conducted in the four simulation
environments introduced in Section 4 with 5000 test queries
each.

5.1 Deterministic Chekov: the roadmap-based
fast-reactive motion planner

The deterministic Chekov motion planner achieves a
fast-reactive capability through constructing a sparse
probabilistic roadmap and storing the all-pair-shortest-path
solutions between each pair of nodes offline (Dai et al. 2018).
The roadmap represents the static collision-free space and is
re-used across planning instances. We construct very sparse
probabilistic roadmaps with a small number of nodes (1000
nodes for a 7-dimensional C-space) so that the online queries
can be fast. For each pair of nodes in the roadmap, k shortest
paths (k ≥ 1) are calculated and stored offline, so that
when dynamic obstacles invalidate some of the edges in the
roadmap, the probability of finding a collision-free trajectory
for the planning task can be enhanced as we increase k.
Because we hope to consider the entire solution space rather
than the very sparse one provided by the roadmap, we
combine this offline roadmap with an online obstacle-aware

optimizer in order to improve trajectory smoothness and
achieve fast reaction to disturbances. The key ideas of this
fast motion planning approach are the reuse of the offline
cached all-pair-shortest-path solutions of sparse roadmaps
during online queries and the combination with fast obstacle-
aware online trajectory optimization.

The core of the roadmap framework for deterministic
Chekhov is a simplified probabilistic roadmap (PRM) variant
combined with a cache of all-pair-shortest-path solutions.
The roadmaps are constructed by randomly sampling points
in C-space until a pre-defined number of collision-free points
have been sampled. In the test environments introduced
in Section 4, the sampling is uniform over the four most
proximal joints of the manipulator, and fixed values are
assigned to the remaining joints for all nodes. Then, each
node is connected to the n nearest neighbors for which
collision-free edges exist. This approach is taken to more
completely cover the workspace with random samples in
the C-space. Tests were conducted to observe the failure
rates of roadmaps in different environments relative to the
number of randomly sampled points in the roadmap. As the
number of randomly sampled points increased, we observed
significant improvement in how often the roadmap was
connected to in all environments, particularly in the “shelf
with boxes” environment. For the tests in this paper, the
roadmaps start out with 1000 collision-free nodes and n =
10 is used. The resulting roadmap is pruned of any nodes
and edges disconnected from the largest subgraph. For the
environments tested, no more than five of the 1000 points
were disconnected from the main subgraph. Then an all-
pair-shortest-path solution set is constructed for the pruned
roadmap and stored for rapid online queries. During online
planning, the start and goal poses are connected to the nearest
nodes in the roadmap and the shortest path between these
two nodes is added to the solution trajectory. This solution
trajectory is then fed into the trajectory optimizer as the
initialization in order to generate a smooth final solution
trajectory quickly.

For the purposes of evaluating the key aspects of our
approach, we have assumed that all obstacles in the
test environments are static. We focus here on static
rather than dynamic obstacles because static obstacles
occupy the majority of the workspace in many practical
applications. Dynamic obstacles could be handled through
storing redundant roadmap paths and by coupling these paths

Prepared using sagej.cls

Dai et al. 7

with fast online obstacle-aware optimization. In addition,
the incremental Chekov approach introduced by Orton
et al. (2019) is an extension to the deterministic Chekov
approach illustrated in this paper that highlights the handling
of dynamic obstacles in the environment. Incorporating
incremental Chekov’s ability of handling dynamic obstacles
into the chance-constrained motion planning framework
described in this paper is a potential direction of our future
research.

5.2 Limitation of existing motion planners
Sampling-based motion planners can operate stand-alone but
are usually not fast enough for real-time high-dimensional
planning tasks, and some of them (like PRM and PRM*)
cannot incorporate constraints on robot dynamics. On the
other hand, optimization-based motion planners locally
optimize a seed trajectory and their performance is very
sensitive to initializations. This section provides a systematic
empirical study on four popular sampling-based planners and
one optimization-based planner, TrajOpt, comparing their
performance in terms of failure-rate, length of solutions and
average planning time. Note that the runtime upper bound for
sampling-based planners are set to 300s in this experiment
so that the optimal planners (RRT* and PRM*) are provided
with enough time to optimize the solutions. This also means
the runtime for RRT* and PRM* will always be around 300s
because optimal planners keep optimizing their solutions
until timeout.

TrajOpt formulates the kinematic motion planning
problem as non-convex optimization over a T ×K-
dimensional vector, where T is the number of time steps
and K is the number of DOFs. Every trajectory in TrajOpt
consists of T waypoints, where the number T is set by
the user. We ran 16 sets of tests, each with an increasing
total number of waypoints, and observed that TrajOpt
runtime increased approximately linearly with number of
waypoints while the collision rate dropped quickly with more
waypoints. In our tests on TrajOpt with straight-line seed
trajectories, we found that setting T = 30 provided a good
balance between low collision rates and algorithm runtimes.
Henceforth, in this section, we use 30 total waypoints
(including the start and target waypoints).

Table 1 summarizes the performance of the five tested
motion planners. The reported failure rate includes failures
in finding a solution and failures in passing our independent
collision test after returning a solution. From the shown
failure rates we can see that in most environments, TrajOpt
fails more frequently in finding collision-free solutions
than other planners. The four sampling-based planners can
find collision-free solutions for most of the queries in the
relatively simple “tabletop with a pole” environment, but
fails much more in the complicated “shelf with boxes”
environment, especially the optimal planners RRT* and
PRM*. Despite sampling-based planners’ relatively high
success rate, the “average runtime” column in Table 1 shows
their limitations. In terms of the average path length, optimal
planners have noticeable advantages in finding shorter
solutions, especially in more complicated environments.
Among the remaining planners, LazyPRM tends to
return longer solutions, which is reasonable due to the
intrinsic mechanism of lazy searching algorithms. TrajOpt’s

Table 1. Evaluation of Existing Sampling-based and Trajectory
Optimization Motion Planners

Environ-
ments Planners1 Failure

Rate

Average
Runtime

(s)2

Average
Path Length

(rad)

Tabletop
with a
Pole

RRT 2.30% 17.88 0.77
LazyPRM 0.22% 7.32 1.76

RRT* 5.32% 300.19 0.63
PRM* 1.00% 300.71 0.79

TrajOpt 17.38% 0.56 0.71

Tabletop
with a

Container

RRT 19.50% 44.90 0.92
LazyPRM 1.11% 15.04 1.92

RRT* 0.86% 300.29 0.80
PRM* 1.28% 300.73 1.04

TrajOpt 35.96% 1.33 1.14

Shelf with
Boxes

RRT 10.00% 63.86 1.06
LazyPRM 16.94% 63.85 2.08

RRT* 26.78% 300.37 0.93
PRM* 24.34% 300.79 1.16

TrajOpt 32.06% 1.59 1.51

Kitchen

RRT 12.28% 45.95 0.78
LazyPRM 0.85% 18.03 1.67

RRT* 0.51% 300.27 0.71
PRM* 1.33% 300.89 0.87

TrajOpt 8.80% 0.74 0.94
1 For each planner, the data shown are averaged from 5000 planning

queries in each environment.
2 The runtime upper-bound is set to 300s. RRT* and PRM* always

use the full amount of time – the small deviation from 300s shown
in the table is due to small timing errors during simulation.

performance in path length is comparable to sampling-
based planners, especially in relatively easy environments.
In conclusion, although sampling-based planners are good
at avoiding collision, they are too slow to be applied in
most practical real-time motion planning tasks. In contrast,
TrajOpt shows advantage in terms of runtime, but the high
collision rate makes it an unsatisfactory planner in practice.

5.3 Deterministic Chekov performance
Due to TrajOpt’s sensitivity to initialization conditions, we
propose that the performance of TrajOpt can be dramatically
improved if we pass in collision-free trajectories as seeds
instead of using C-space straight-line seeds. Therefore, we
use the sampling-based planners from Table 1 as well as the
Chekov roadmap to provide initializations to TrajOpt and
evaluate the performance of the combined planners. Here we
consider only the queries where the sampling-based planner
successfully found a collision-free solution, and evaluate
TrajOpt’s runtime, solution trajectory length and collision
rate.

We first demonstrate in Table 2 the performance of the
Chekov roadmap planner alone in the four environments
introduced in Section 4. Compared with Table 1, Table 2
shows that our roadmap performs comparably or better than
all other tested sampling-based planners in terms of failure
rate. In the most difficult environment, only RRT was able
to produce a solution more often than our roadmap planner.
In addition to failure rate, our roadmap planner’s average
runtime is substantially better than other sampling-based
planners’ in all cases. It is faster by more than an order
of magnitude in most observed cases, which is a result of
caching the all-pair-shortest-path solution sets offline. For

Prepared using sagej.cls

8 Journal Title XX(X)

Table 2. Chekov Roadmap Performance in All Environments

Environ-
ments1

Failure
Rate2

Average
Runtime

(s)

Average
Path Length

(rad)

Best
Average3

(rad)
Tabletop

with a Pole 0.18% 0.14 1.24 0.63

Tabletop
with a

Container
0.76% 0.18 1.32 0.80

Kitchen 1.92% 0.38 1.29 0.71
Shelf with

Boxes 12.06% 0.39 1.30 0.93

1 In each environment, roadmap performance is tested on 5000
planning tasks and the data shown in this table are averaged from
the 5000 results.

2 For these roadmaps, failure occurs when no collision-free straight-
line connection was found to an existing point on the roadmap from
the start or goal pose of a test case.

3 Best average is the shortest average path length between all
tested sampling-based planners in that environment. Shown here
to provide context for the roadmap performance.

path length, the roadmap planner performs worse than the
optimal planners and RRT, but better than LazyPRM. In
general with roadmap-based planners, the sparsity of the
roadmap restricts its ability to obtain short paths. With only
1000 nodes, we consider the roadmaps we are using to be
relatively sparse for the 7D C-space. Since these paths will
be used as seeds for TrajOpt and their lengths are well within
an order of magnitude of one another, the discrepancies in
path length are not a concern here.

TrajOpt requires the number of waypoints in the solution
trajectory to be the same as in the seed. Therefore, if
we pass in seeds directly from sampling-based planners
without any pre-processing, the number of waypoints in
different queries will fluctuate drastically. As mentioned
in Section 5.2, TrajOpt’s runtime increases approximately
linearly as the number of waypoints increases, which means
the variation of waypoint numbers will influence runtime.
Additionally, seeds taken directly from the sampling-based
planners with a fewer number of waypoints might result in
higher collision rates after shortening and smoothing through
TrajOpt compared to those with more waypoints. This is
because such seed trajectories usually have longer edges in-
between waypoints and are more likely to be very close to
obstacles. Hence, before passing the seeds into TrajOpt, we
interpolate them by setting a upper bound of 0.16 rad for the
distance between adjacent waypoints. This pre-processing
dramatically reduced the collision rate of TrajOpt solutions
and narrowed down the variance of TrajOpt’s runtime among
different cases. Although the average TrajOpt runtime is
increased due to the increased number of waypoints after
interpolation, it is still under 1s in most environments.

Table 3 provides a comparison between the com-
bined “sampling-based + TrajOpt” planners with existing
sampling-based planners and with our Chekov roadmap
planner. Comparing the TrajOpt runtime column in Table 3
and the straight-line seed TrajOpt runtime in Table 1, we see
that TrajOpt’s runtime usually decreases when provided with
a collision-free seed. Specifically, in the cases where TrajOpt
with a straight-line seed failed to push the trajectory out of
collision, we found a 50% - 70% runtime drop after provided

Table 3. TrajOpt Seeded with Sampling-based Planner Solution
compared to Chekov Roadmap Solution

Environ-
ments

Seed
Planners

Average
TrajOpt
Run-
time
(s)

Average
Seed

Length
(rad)

Seed + TrajOpt Planner
Average

Run-
time
(s)1

Average
Path

Length
(rad)

Colli-
sion
Rate2

Tabletop
with a
Pole

RRT 0.63 0.77 18.51 0.70 1.29%
LazyPRM 0.98 1.76 8.30 1.28 0.12%

RRT* 0.29 0.63 300.48 0.54 0.02%
PRM* 0.36 0.79 301.07 0.64 0.10%

Chekov 0.45 1.24 0.59 0.82 0.06%

Tabletop
with a

Contain-
er

RRT 1.02 0.92 45.92 0.85 2.18%
LazyPRM 1.55 1.92 16.59 1.44 0.96%

RRT* 0.44 0.80 300.73 0.70 0.90%
PRM* 0.49 1.04 301.22 0.84 1.12%

Chekov 0.52 1.32 0.70 1.02 0.90%

Shelf
with

Boxes

RRT 0.92 1.06 64.87 0.98 4.20%
LazyPRM 1.36 2.08 65.21 1.60 1.57%

RRT* 0.46 0.93 300.83 0.81 1.17%
PRM* 0.67 1.16 301.46 0.95 1.98%

Chekov 0.61 1.30 1.00 1.02 1.98%

Kitchen

RRT 0.99 0.78 46.95 0.72 0.52%
LazyPRM 1.28 1.67 19.31 1.11 0.35%

RRT* 0.45 0.71 300.72 0.62 0.37%
PRM* 0.54 0.87 301.43 0.70 0.46%

Chekov 0.70 1.29 1.08 0.86 0.73%
1 Sum of seed planner runtime and TrajOpt runtime averaged from 5000

test cases.
2 Continuous-time collision rate.

with sampling-based planners’ solutions as initializations.
Although a small percentage of cases end up in collision
after TrajOpt’s smoothing and optimization, a significant
improvement in average C-space path length is observed if
we compare the “average path length” column in Table 1 and
in Table 3. However, the “average runtime” for combinations
with existing sampling-based motion planners indicates that
it is infeasible to use them as seed planners in real-time
motion planning tasks. In contrast, the “Chekov roadmap +
TrajOpt” combination shows an average run-time for about
1 s in all four tested environments.

When the roadmap planner produces a solution, TrajOpt
in turn produces a collision-free trajectory more than 98%
of the time. Additionally, these optimized trajectories are on
average more than 10% shorter than their corresponding seed
trajectories. Figure 2 shows the four proximal joints for three
different trajectories to help visualize the improvements
TrajOpt is making on the seed trajectories. The solid
lines are the roadmap seeds and the dashed lines are the
outputted trajectories by TrajOpt when provided those seeds.
From Figure 2 we can see that TrajOpt fulfilled the task
of smoothing and shortening the sub-optimal trajectories
produced by the Chekov roadmap. In Table 3, the difference
in average runtime of the different seed planner coupled with
TrajOpt is most notable for highlighting the performance
improvements provided by our roadmap planner, but runtime
as a metric does not reveal the whole picture for many of
these planners. As noted earlier, the optimal planners like
RRT* will always use the full allotted time but may have
a good non-optimal solution far sooner than that. Also, in
our test cases, LazyPRM constructs its roadmap online for
one time use and then searches for a path in that roadmap. In

Prepared using sagej.cls

Dai et al. 9

Figure 2. Roadmap seed trajectories shown with corresponding trajectories optimized by TrajOpt to illustrate improvement on the
seed (Dai et al. 2018). The solid lines are the roadmap seeds and the dashed lines are the outputted trajectories by TrajOpt when
provided those seeds.

general, a PRM does not lend itself to single-query problems.
Our roadmap planner precomputes the roadmap and all-
pair-shortest-path solutions, but is also essentially a PRM.
It would be interesting to compare the performance of our
roadmap planner to faster RRT variants, but it is clear to us
that the speed provided by querying precomputed solutions
from a PRM of some form outweighs any optimization to be
had in online search.

Overall, our roadmap planner performs as well as if
not better than the off-the-shelf sampling-based planners
we tested. Average runtime is where we saw the greatest
improvement when using our roadmap planner to provide
seed solutions rather than using other traditional sampling-
based planners, which is promising given that one of our
main goals is to establish a fast-reactive motion planning and
execution system for high-dimensional robots. Although we
are currently not using dynamic obstacles in our experiments,
our average online planning time leaves us optimistic that our
planner will be able to handle disturbances in planning tasks
with fast reaction.

6 Chance-constrained motion planning
approach – probabilistic Chekov

This section introduces the probabilistic Chekov (p-Chekov)
risk-aware motion planning and execution system that
accounts for the potential uncertainties during execution
while making plans and returns solutions that can satisfy
user-specified chance constraints over plan failure. Figure 3
shows the system diagram of p-Chekov, which can be divided
into a planning phase and an execution phase. The goal in the
planning phase is to find a feasible solution trajectory along
which the estimated risk of collision is smaller than or equal
to the given joint chance constraint ∆c. Since this initial
solution is not guaranteed to be optimal and can sometimes
be overly conservative, p-Chekov will keep improving it in
an anytime manner during the execution phase in order to
achieve better utility.

In p-Chekov, time is discretized into fixed-interval time
steps, and the collision risk at each waypoint is considered
separately through risk allocation. When the planning
phase starts, p-Chekov first uniformly distributes the joint
chance constraint into the allowed collision risk bounds

Prepared using sagej.cls

10 Journal Title XX(X)

Figure 3. System diagram for p-Chekov (Dai et al. 2019)

for each waypoint along the trajectory. Provided with
a risk allocation, p-Chekov then uses the deterministic
Chekov approach described in Section 5.1 to generate a
nominal trajectory that is feasible and collision-free under
deterministic dynamics. Given the estimated model of
controller and sensor noises during execution, p-Chekov
then estimates the a priori probability distribution of robot
states along this nominal trajectory, which will be introduced
in Section 6.1. With this state distribution information, p-
Chekov provides two different approaches for estimating
the probability of collision at each waypoint along this
trajectory: a quadrature-based sampling approach and an
offline-trained function approximation approach, which
will both be explained in Section 6.2.1. After that, we
can compare the allocated risk bound and the estimated
probability of collision at each waypoint along the nominal
solution trajectory, shown as the “risk test” step in Figure 3.
If the nominal trajectory fails to pass the risk test, the robot
configurations at the waypoints where the estimated risk of
collision exceeds the allocated risk bound will be viewed as
conflicts. Before p-Chekov goes back to the “plan generating
and risk estimation” stage in Figure 3, constraints associated
with the conflict configurations and conflict waypoints will
be added so that deterministic Chekov can be guided to find
safer nominal trajectories. Additionally, p-Chekov will also
reallocate the waypoint risk bounds, as will be explained
in detail through Algorithm 2 in Section 6.3.1. This risk
reallocation takes risk bounds from the waypoints where they
are underutilized to the ones where they are violated, so that
feasible trajectories can be found in fewer iterations. With
the above new constraints, p-Chekov will then replan and
improve the nominal trajectory from the previous iteration.
This cycle will keep going until the solution trajectory
satisfies the chance constraints at all waypoints or the
iteration number hits its upper bound.

When the nominal trajectory passes the risk test, p-Chekov
will transition to the execution phase, where it optimizes the
solution it found in the planning phase while the robot is
executing the trajectory. This plan refinement is based on

the iterative risk allocation (IRA) algorithm, which would be
illustrated in Section 6.3.2. Through gradually reallocating
the risk from inactive constraints to active constraints, IRA
provides less conservative risk allocations and allows for
higher quality motion plans. After that, p-Chekov will go
back to the “plan generating and risk estimation” stage with
zero penalty hit-in distance and find a new feasible solution
which satisfies the new risk allocation. When it finds a valid
plan, the robot will keep executing based on the updated
plan. This risk reallocation and plan refinement process is
conducted iteratively, which will help the planner to converge
to a locally optimal solution if given enough number of
iterations.

6.1 Approach for estimating robot state
probability distributions

The “estimate state probability distributions” component in
Figure 3 plays a significant role of estimating the robot
state probability distributions along the nominal trajectory
during execution based on the given noise level. In this paper,
we present a linear-quadratic Gaussian motion planning
(LQG-MP) approach (Van Den Berg et al. 2011) which
can act as this state probability estimator in p-Chekov.
LQG-MP connects control theory and probabilistic motion
planning by taking into account the controllers and sensors
that will be used during execution and characterizing the a
priori probability distributions of robot states when making
motion plans. In our implementation of LQG-MP, it is
assumed that a discrete-time Kalman filter (Gelb 1974)
and a finite-horizon discrete-time LQR controller (Bertsekas
et al. 1995) will be used during execution, and the
deviation from the desired trajectory during execution is
small enough so that the control effort needed to bring
the robot back on track will not exceed the controller
limit. In order to achieve optimal control policies according
to the separation theorem (Luenberger 1979), it is also
assumed that both process noises and observation noises
have Gaussian distributions. In real-world scenarios, noises
often accumulate from inconsistent, random sources, and
based on the Central Limit Theorem (Hoeffding et al.
1948), thus the Gaussian noise assumption are appropriate in
many applications. However, developing a state probability
estimator that can incorporate non-Gaussian noises to
replace LQG-MP is a very interesting future work direction.

We express the system model in terms of the deviations
from the desired trajectory Π = (x∗0,u

∗
0, . . . ,x

∗
T ,u

∗
T):

x̄t = xt − x∗t ,

ūt = ut − u∗t ,

z̄t = zt − h(x∗t , 0).

(8)

Since robot motions will be controlled to closely follow
the planned trajectory during execution, it is reasonable to
linearize the system dynamics model and observation model
as:

x̄t = Atx̄t−1 +Btūt−1 + Vtmt, mt ∼ N (0,Mt),

z̄t = Htx̄t +Wtnt, nt ∼ N (0, Nt).
(9)

where At, Bt, Vt, Ht and Wt are the Jacobian matrices of f
and h along the desired trajectory Π.

Prepared using sagej.cls

Dai et al. 11

In LQG, since the true state x̄t is unknown, the state
estimation x̃t from the Kalman filter is used to determine
the control input at each time step during the trajectory
execution. This is reasonable because the separation theorem
tells us that observer design and controller design can be
separated into two independent processes with the guarantee
of LQG optimality. During the execution of the whole
desired trajectory, optimal state estimations based on the
Kalman filter and optimal control policy computations based
on LQR take turns and cycles until the execution is complete,
so as to optimize the execution and track the desired
trajectory.

If we denote the Kalman gain as Lt and the controller gain
asKt, then the evolution of the true state x̄t and the estimated
state x̃t at each time step t can be predicted as follows (Van
Den Berg et al. 2011):

[
x̄t
x̃t

]
=

[
At BtKt

LtHtAt At +BtKt − LtHtAt

] [
x̄t−1

x̃t−1

]
+

[
Vt 0

LtHtVt LtWt

] [
mt

nt

]
,

(10)

where [
mt

nt

]
∼ N (0,

[
Mt 0
0 Nt

]
). (11)

If we define

Xt ,
[
x̄t
x̃t

]
,

Et =

[
At BtKt

LtHtAt At +BtKt − LtHtAt

]
,

Ft =

[
Vt 0

LtHtVt LtWt

]
,

Gt =

[
Mt 0
0 Nt

]
,

(12)

and initialize the variances for estimate states with 0 and the
variances for true states with Σ0, then the variance matrix Ct
for Xt can be expressed as:

Ct = EtCt−1E
T
t + FtGtF

T
t , C0 =

[
Σ0 0
0 0

]
. (13)

Therefore, the matrix of true states and estimated states Xt
has the distribution:

Xt ∼ N (0, Ct). (14)

Substitute into Equation 8, we can get the a priori
distributions of the true states and control inputs during the
execution of the desired trajectory:[

xt
ut

]
∼ N (

[
x∗t
u∗t

]
,ΛtCtΛ

T
t), (15)

where

Λt =

[
I 0
0 Kt+1

]
. (16)

With these a priori distributions of robot states, we can
then evaluate the probability of collision along the desired
trajectory to find feasible solutions that can satisfy the given
chance constraint.

6.2 Collision probability estimation approach
Continuous-time collision risk is difficult to represent, so
most collision probability estimation approaches divide
the entire trajectory into discrete waypoints, estimate the
collision probability at each waypoint, and then use additive
or multiplicative approximations to represent the collision
risk along the entire trajectory. In the additive approach,
Boole’s inequality tells us that:

P

(
T∨
t=1

St

)
≤

T∑
t=1

P
(
St

)
, (17)

where St is the no-collision constraint at waypoint t.
Therefore,

T∑
t=1

P
(
St

)
≤ ∆ (18)

is the sufficient condition for

P

(
T∨
t=1

St

)
≤ ∆, (19)

where ∆ is the joint chance constraint for all the waypoints
along a given trajectory. Similarly, the multiplicative
approach assumes independence between the collision
probabilities at different waypoints, and uses

1−
T∏
t=1

(
1− P

(
St

))
≤ ∆ (20)

to approximate

P

(
T∨
t=1

St

)
≤ ∆. (21)

Note that neither of these two approaches can account
for edge collisions between waypoints. In addition, both
approximations have made strong assumptions about the
complex high-dimensional correlation between collisions
at different waypoints. Specifically, the additive approach
assumes that the collisions at different waypoints are
mutually exclusive, whereas the multiplicative approach
assumes they are independent from each other. If we don’t
take edge collisions into consideration, then the additive
approach is always guaranteed to be conservative, but
the multiplicative approach only has the conservativeness
guarantee when T approaches infinity. In p-Chekov, we
adopt the additive discretization approximation and estimate
the collision risk at individual waypoints, then alleviate the
conservative shortcoming of additive approaches through
risk reallocation. We present two different approaches for
estimating waypoint collision risk in Section 6.2.1 and
Section 6.2.2 respectively: a quadrature-based approach and
a learning-based approach. Note that both approaches still
inherit the conservativeness from additive risk approximation
and tend to fail at finding feasible solutions in environments

Prepared using sagej.cls

12 Journal Title XX(X)

with narrow spaces, e.g. the shelf with boxes environment
introduced in this paper. How to take the mutual correlation
between waypoint collisions into consideration and relax
the conservativeness issue in p-Chekov is a very interesting
direction for future research.

6.2.1 Quadrature-based collision probability estimation
Given the state probability distribution around a nominal
configuration, the collision probability can be approximated
by sampling from this distribution and checking the
percentage of configurations that are in collision. However,
as with all Monte Carlo methods, this approach would suffer
from inaccuracy when the sample size is small and high
computational cost when the sample size is large. We tested
the speed of the Flexible Collision Library (FCL) collision
checker (Pan et al. 2012) p-Chekov uses in the “kitchen”
environment with 55 obstacles, and results show that 100
collision checks take about 0.2 s. Although FCL is one of
the fastest collision checking tools, it is still infeasible for p-
Chekov to be a real-time motion planner if we use simple
Monte Carlo in the 7-dimensional C-space. Therefore, an
intelligent sampling method that can closely approximate the
collision probability with only a small number of samples is
very important (Dai et al. 2019).

This Monte Carlo collision probability estimation
approach is essentially estimating the expectation of a
collision function:

c(xt) =

{
0, if xt is collision free
1, if xt is in collision

along the distribution xt ∼ N (x̂t,Σxt) estimated in
Section 6.1, where xt ∈ Rnx is the nominal configuration
at time step t. Since expectations can be written as
integrals, non-random numerical integration methods (also
called quadratures (Hildebrand 1987)) can be applied to
solve this problem. Assume xt is d-dimensional and let xit
denote its ith component whose distributions are independent
from each other. This assumption is reasonable because
correlated noise components can be transformed through
robot state space coordinate transformation so that the
covariance matrices will become diagonal. Since xt is
Gaussian distributed, we can write xit ∼ N (µi, σ

2
i). Then,

based on the conditional distribution rule of multivariate
normal distribution (Eaton 1983), the probability density
function of xt can be expressed as:

p(xt) = p(x1:d
t) = p(x1

t)p(x
2:d
t |x1

t) = p(x1
t)p(x

2:d
t),

x1
t ∼ N (µ1, σ

2
1),

x2:d
t ∼ N (µ2:d,Σ2:d),

(22)
where µ2:d and Σ2:d denote the mean and variance of
x2:d
t respectively. Then we can write the expectation of the

collision function as:

E(c(xt)) =

∫ ∞
−∞

p(x1
t)

∫
Rnx−1

p(x2:d
t)c(xt)dx

2:d
t dx1

t .

(23)
Let g(x1

t) =
∫
Rnx−1 p(x

2:d
t)c(xt)dx

2:d
t and apply the proba-

bility density function of Gaussian distributions, we have:

E(c(xt)) =

∫ ∞
−∞

p(x1
t)g(x1

t)dx
1
t

=

∫ ∞
−∞

1

σ1

√
2π

exp
(
− (x1

t − µ1)2

2σ2
1

)
g(x1

t)dx
1
t .

(24)
Gauss-Hermite quadrature approximates the value of an

integral by calculating the weighted sum of the integrand
function at a finite number of reference points, i.e.∫ ∞

−∞
e−y

2

h(y)dy ≈
n∑
j=1

wjh(yj), (25)

where n is the number of sampled points, xj are the roots of
the Hermite polynomial Hn(x) and the associated weights
wj are given by Abramowitz and Stegun (1964):

wj =
2n−1n!

√
π

n2[Hn−1(yj)]2
. (26)

A quadrature rule with n sampled points is called a n-point
rule.

E(c(xt)) in its form in Equation 24 still doesn’t
correspond to the Hermite polynomial, therefore we conduct
the following variable change:

y1 =
x1
t − µ1√

2σ1

⇔ x1
t =
√

2σ1y1 + µ1. (27)

Applying Equation 27 to Equation 24 yields:

E(c(xt)) =

∫ ∞
−∞

1√
π
e−(y1)2g(

√
2σ1y1 + µ1)dy1. (28)

If we iteratively conduct this Gauss-Hermite quadrature
approximation procedure from x1

t through xdt , we will be
able to approximate the value of E(c(xt)) through:

E(c(xt)) ≈ π−
d
2

n1∑
j1=1

n2∑
j2=1

. . .

nd∑
jd=1

(
d∏
i=1

wi,ji

)
g(
√

2σ1y1,j1

+ µ1,
√

2σ2y2,j2 + µ2, . . . ,
√

2σdyd,jd + µd).
(29)

In one-dimensional space, a n-point rule yields 2n
parameters and it is possible to integrate polynomials of
degree up to 2n− 1 without error. For a < x < b and h(x)
with 2n continuous derivatives, the error in a Gauss rule is:

(b− a)2n+1(n!)4

(2n+ 1)[(2n)!]3
h(2n)(x). (30)

Note that although quadrature methods are well tuned to one-
dimensional problems, extending them to multi-dimensional
problems through iterated one-dimensional integrals still
can’t escape the “curse of dimensionality” (Bellman 1957).
The result of a d-dimensional quadrature rule can not be
better than the worst of the rules we use in each dimension.
If we use the same n-point one-dimensional quadrature rule
for each of the d-dimensions, then we needN = nd function
evaluations. If the one-dimensional rule has error O(n−r),
then the combined rule has error

Prepared using sagej.cls

Dai et al. 13

|Î − I| = O(n−r) = O(N−r/d). (31)

Even a modestly large d can give a very inaccurate
result (Owen 2014). Additionally, the collision function
c(xt) we are trying to evaluate is not smooth, which
adds to the inaccuracy of the approximations through
this quadrature-based sampling method. Consequently, this
quadrature-based collision probability estimation approach
is a relatively rough one.

To achieve fast online motion planning for a 7-DOF
manipulator, in p-Chekov, the number of quadrature points
at each dimension shouldn’t be too large. Table 4 shows the
abscissas and weights of the two- and three-point Gauss-
Hermite quadrature rules. We hypothesize that the two-
point rule will generate more conservative risk estimations,
because the three-point rule places higher weights on
the mean values, which in p-Chekov are the nominal
configurations that are guaranteed to be collision-free.
Empirical results proved that using the two-point rule is safer
and also much faster, thus it is used in our implementation.

Table 4. Gauss-Hermite Quadrature Abscissas and Weights

n xi wi

2 ± 1
2

√
2 1

2

√
π

3

0 2
3

√
π

± 1
2

√
6 1

6

√
π

Note that the state probability distribution computed
from LQG-MP doesn’t fully reflect the true probability
distribution of joint states due to joint limits. In p-Chekov,
this issue is addressed by using the upper or lower bound
of joint values instead of the actual point sampled from the
estimated distribution when the joint limit is exceeded. We
choose to handle it this way because in practice, deviations
from the desired configuration are usually caused by internal
or external disturbance to robot joints. When the disturbance
tends to push one of the joints towards a point which exceeds
its upper bound, this joint will end in its upper bound position
instead of exceeding the joint limit.

This sampling-based approach of estimating the collision
probability based on Gauss-Hermite quadrature theory can
be summarized in Algorithm 1. Given a nominal trajectory
and the corresponding state probability distributions, it first
calculates the abscissas and weights for each DOF of the
target manipulator through applying the n-point Gauss-
Hermite quadrature rule to each one-dimensional Gaussian
distribution. After checking joint limits, it stores the sampled
abscissas and weights in a NodeList (line 7-11), and then
evaluates the collision risks of the robot configured at all the
combinations of these DOF values according to Equation 29.
Algorithm 1 iteratively conducts this quadrature-sampling
and collision probability evaluating procedure for each
waypoint along the nominal trajectory, and then returns the
collision probabilities as a list r. These probabilities are then
compared with the allocated risk bound at each waypoint in
order to determine whether the joint chance constraint for the
whole trajectory is satisfied. A detailed description of the risk
allocation approach will be provided in Section 6.3.

Algorithm 1: GHCollisionProbabilityEstimation
Input:
Π: desired trajectory
D: robot state distribution along desired trajectory
R, E : robot and environment collision models respectively
dof : robot degrees of freedom
n: number of samples used in quadrature rule
lu, ll: upper and lower limits of active joints respectively
Output:
r: collision risk at each waypoint along desired trajectory

1 Initialize r to a list of zeros
2 for i = 1, 2, . . ., len(Π) do
3 Initialize NodeList to an empty set
4 for d = 1, 2, . . . , dof do
5 (µ, σ)← D[i, d] /* Draw from D at the

ith waypoint dth joint */
6 (nodes, weights)← QuadratureSampling(µ, σ, n)
7 for node in nodes do
8 if node > lu[d] then node← lu[d]
9 if node < ll[d] then node← ll[d]

10 Append (nodes, weights) to NodeList

11 Estimate r(i) by taking nodes from NodeList, checking
collision with E ,R, and averaging the collision number

6.2.2 Learning-based collision probability estimation
The quadrature-based sampling approach introduced in
Section 6.2.1 mitigates the inaccuracy of random sampling
and avoids the difficulty of mapping between C-space and
workspace. Although it can significantly reduce the number
of samples required for collision risk estimation at each
time step in the trajectory, its computation time in high-
dimensional planning space still obstructs its application
in real-time motion planning tasks. Even though only
two quadrature nodes per dimension are used to estimate
the collision risk for each waypoint, the total number of
collision tests conducted online is still very big when
the manipulator have 7 DOFs (27 × nwaypoints collision
tests for each nominal trajectory). Additionally, two-node
quadratures have very limited ability of approximating
non-smooth functions, whereas the collision functions here
are highly non-smooth. Therefore, quadrature-based p-
Chekov inevitably suffers from errors when approximating
the collision risk, and the efficiency and accuracy of
risk estimation becomes its bottleneck that restricts its
application in uncertainty-sensitive real-time manipulation
planning tasks. Therefore, this section introduces machine
learning approaches into the collision risk estimation
component of p-Chekov in order to improve its efficiency
and accuracy.

We hypothesize that if we take enough samples containing
nominal configurations with their probability distributions
and risks of collision from the environment that the robot
will be interacting with in order to train a regression model
offline, then this model can act as the “Approximate Risk
of Collision” component in Figure 3 in the online planning
phase which makes accurate predictions given a nominal
trajectory and the state distributions outputted by the “LQG-
MP” component. In order to test this hypothesis, 60000 data
points are collected in each of the tabletop environments,
each of which contains a nominal joint configuration that is
randomly sampled from the uniform distribution defined by

Prepared using sagej.cls

14 Journal Title XX(X)

the manipulator’s joint limit, a randomly sampled standard
deviation whose range is decided according to the real
experiment data from quadrature-based p-Chekov tests, and
a collision risk scalar that is viewed as the “ground-truth”
risk associated with this configuration distribution. This
collision risk is estimated using a simple Monte Carlo
method: randomly sample 100000 nodes from the Gaussian
distribution defined by the nominal joint configuration and
the standard deviation, and compute the average collision
rate. The nominal configuration together with its standard
deviation forms the input vector to the regression algorithm,
and the collision risk is its label.

This paper compares the performance of three different
classes of regressors in the Scikit Learn (Pedregosa et al.
2011) package (kernel ridge regressor, random forest
regressor, and Gaussian process regressor) as well as neural
networks through the Keras (Chollet et al. 2015) interface
with TensorFlow (Abadi et al. 2015) back engine. Kernel
ridge regression (Murphy 2012) learns a linear function in
the space induced by the respective kernel and the data, and
minimizes the objective:

J = ||y − wTX||2 + α||w||2, (32)

where X is the input vector, y is the true label, w is the
weight vector given by the regressor and α is the parameter
that determines the regularization strength. In the kernel
ridge regression tests in this paper, the performance of
three different classes of kernels are compared: radial basis
function (RBF) kernel, polynomial kernel and Matern kernel.
In RBF kernels, each element in the kernel matrix between
datasets X and Y is computed by:

K(x, y) = exp(−γ||x− y||2) (33)

for each pair of rows x in X and y in Y . Therefore, the
parameter γ represents how far the influence of a single
training example reaches, with low values meaning “far” and
high values meaning “close”. In polynomial kernels, degree
is a parameter that represents the order of polynomials used
in the kernel. A degree− d polynomial kernel is defined as:

K(x, y) = (xT y + c)d, (34)

where c ≥ 0 is a free parameter trading off the influence of
higher-order versus lower-order terms in the kernel. Matern
kernel is defined by:

K(x, y) =
1

2ν−1Γ(ν)
(
2
√
ν||x− y||
θ

)νHν(
2
√
ν||x− y||
θ

),

(35)
where the length scale parameter θ is similar to the γ in RBF
kernels, Γ is the Gamma function, the ν parameter controls
the smoothness of the learned function, and Hν is the
modified Bessel function of the second kind of order ν. When
ν approaches infinity, the Matern kernel becomes equivalent
to the RBF kernel, and when ν = 0.5 it’s equivalent to the
absolute exponential kernel.

Random forest regression (Liaw et al. 2002) constructs
an ensemble of decision trees using a different bootstrap
sample of the data for each tree (also called bagging),
and selects a random subsets of the features at each

candidate split in the decision tree learning process. Gaussian
process regression (Rasmussen and Williams 2006) defines
a collection of random variables, any finite number of
which have a joint Gaussian distribution, and then conducts
probabilistic inference directly in the function space. Here
we choose to use Matern kernels in the Gaussian process
regression tests. Artificial neural network is another powerful
tool for conducting supervised regression on large datasets.
Section 7.3 compares the performance of different regression
methods and shows that neural networks with appropriate
configurations have the best performance in this collision
risk regression task, thus we apply them to p-Chekov and
compare their performance with the quadrature-based p-
Chekov.

6.3 Risk allocation approach
Using discretizations to estimate trajectory collision prob-
ability inevitably faces sensitiveness to the location and
number of discrete waypoints. Janson et al. (2018) addresses
this issue by introducing a Monte Carlo Motion Planning
(MCMP) approach which solves the deterministic motion
planning problem with inflated obstacles and then adjusts
the inflation so that the solution trajectory is exactly as
safe as desired. However, since MCMP inflates obstacles in
the whole planning scene with the same amount, it doesn’t
account for the different collision probabilities at different
locations along the trajectory due to different robot configu-
rations and velocities. Furthermore, MCMP require obstacles
with simple geometries, which limits the application of
this approach to simple low-dimensional motion planning
tasks. Ono and Williams (2008b) addresses the conservative
shortcoming of the additive discretization approach through
an iterative risk allocation (IRA) algorithm, which divides
the whole chance-constrained optimization problem into two
stages and seeks the optimal risk allocation that allows for a
feasible solution.

Inspired by the concept of risk allocation and bi-stage
motion planning, p-Chekov decomposes the joint chance
constraint into individual risk bounds at each time step,
and then compares the estimated collision risk with the
corresponding risk bound to determine whether the joint
chance constraint is satisfied or violated. The planning phase
algorithm of p-Chekov starts with a uniform risk allocation
and aims at finding a feasible trajectory that can satisfy
this specific risk allocation. However, a feasible solution
that satisfies this uniform risk allocation might not exist
or might need too many iterations to find, thus p-Chekov
uses a risk reallocation approach during the planning phase
to intelligently speed up the process of finding an initial
feasible solution. Since this initial solution can sometimes
be overly conservative and highly sub-optimal due to the
additive discretization assumption, in the execution phase p-
Chekov iteratively improves the trajectory by optimizing the
upper stage risk allocation. The risk allocation approaches in
p-Chekov planning phase and execution phase are presented
in Section 6.3.1 and Section 6.3.2 respectively.

6.3.1 P-Chekov planning phase risk reallocation Risk
allocation decomposes a joint chance constraint ∆ by
allocating risk bounds δi to individual constraints, where∑N

1 δi = ∆. The planning phase of p-Chekov starts with

Prepared using sagej.cls

Dai et al. 15

a uniform risk allocation and a nominal trajectory from
deterministic Chekov which is collision-free in the static
environment with no noise. When provided with process
noises and observation noises, the collision risk estimation
component described in Section 6.2 gives us the collision
risk at each waypoint along the nominal trajectory. If the
allocated risk bounds are violated at some waypoints, besides
adding more constraints to those waypoints, p-Chekov also
reallocates the risk bounds to allow for higher collision risks
at the violated waypoints. This risk reallocation procedure,
as shown in Algorithm 2, not only reduces the number of
iterations to get initial feasible solutions but also produces
less conservative trajectories.

The planning phase risk reallocation relies on the
classification of different constraints. Denote the estimated
collision risk at waypoint i as ri, and the allocated risk bound
as δi. When ri exceeds δi, we define the chance constraint
at the ith waypoint as a violated constraint, otherwise it
is viewed as satisfied. Satisfied constraints are divided into
active constraints and inactive constraints by introducing a
risk tolerance parameter η. If the difference between δi and
ri is larger than the risk tolerance, we view this underutilized
chance constraint as inactive. Otherwise, the constraint is
viewed as active. In short, the classification of constraints at
different waypoints is as follows:

Constraint Violated: δi − ri < 0

Constraint Satisfied:

{
Active: 0 < δi − ri < η

Inactive: δi − ri > η

(36)
Algorithm 2 first identifies inactive constraints where the

risk bounds are underutilized, and then takes part of their risk
bounds out based on the risk reallocation parameter α (line 1-
7). After that, it calculates the total residual risk δresidual (the
total unallocated chance constraint) and the total excessive
risk TotalV iolation (sum of the risk violation on each
violated constraint). It then reallocates δresidual to each
violated constraint proportional to the excessive risk at this
waypoint (rpj − δpj) (line 10 - 12). The key idea of this risk
reallocation method is to take risk from inactive constraints
and give it to those violated constraints. This is different
from the IRA algorithm introduced by Ono and Williams
(2008a). IRA requires an initial feasible solution that satisfies
the uniform allocation to start with, and reallocates risk from
inactive constraints to active constraints. Since IRA doesn’t
help to find the initial feasible solution, it is only applicable
to p-Chekov’s execution phase but not the planning phase.

6.3.2 P-Chekov execution phase iterative risk allocation
In the execution phase, p-Chekov adapts the IRA algorithm
to improve the trajectory in an anytime fashion, as described
in Algorithm 3. This IRA-based approach takes as input
the estimated collision risks and allocated risk bounds
for each waypoint from the planning phase, and then
determines active constraints using the ActiveContraint()
function shown in Algorithm 4. It then takes part of
the allocated risks for inactive constraints and reallocates
them to the active constraints (line 6 - 12). After this
risk reallocation procedure, we run the planning phase
algorithm with the new risk allocation, and then compare the

Algorithm 2: RiskReallocation
Input:
ri: estimated collision risks at each waypoint; i = 1, 2, . . . , N
δi: risk allocations at each waypoint; i = 1, 2, . . . , N
pj : waypoint indices where risk allocation is violated
α: risk reallocation parameter
∆: joint chance constraint for the whole trajectory
η: risk tolerance
Output:
δnew
i : new risk allocations for each waypoint; i = 1, 2, . . . , N

1 for i = 1, 2, . . . , N do
2 if δi − ri > η then
3 δnew

i ← αδi + (1− α)ri
4 else
5 δnew

i ← δi

6 δresidual = ∆−
∑N

i=0 δ
new
i

7 TotalV iolation← Sum of excessive risk for all waypoints
where collision risk violates the allocated risk bound

8 for j = 1, 2, . . . , Nviolated do
9 δnew

pj ← δpj + δresidual(rpj − δpj)/TotalV iolation

utility of the new solution J(Π) with that of the previous
solution J(Πprevious). The algorithm terminates when the
improvement is too small. Otherwise, we say IRA effectively
improved the solution and repeat this procedure.

Algorithm 3: IterativeRiskAllocation
Input:
ri: estimated collision risks from planning phase;
i = 1, 2, . . . , N
δi: risk allocations from planning phase; i = 1, 2, . . . , N
α: risk reallocation parameter
∆: joint chance constraint for the whole trajectory
η: risk tolerance
ε: convergence tolerance
Output:
Π: a solution trajectory

1 J ←∞
2 while |J(Π)− J(Πprevious|) < ε do
3 Πprevious ← Π
4 Nactive, r =ActiveConstraint(δ, r)
5 if 0 < Nactive < N then
6 for i = 1, 2, . . . , N do
7 if δi − ri > η then δi ← αδi + (1− α)ri

8 δresidual = ∆−
∑N

i=0 δ
new
i

9 foreach j where constraint is active at jth waypoint
do

10 δj ← δj + δresidual/Nactive

11 Run p-Chekov planning phase algorithm with new δ
and get new r associated with the new solution
trajectory Π

12 else
13 break

P-Chekov’s execution phase risk allocation optimization
approach differs from the original IRA algorithm introduced
by Ono and Williams (2008a) in terms of the active constraint
determination method. The way original IRA defines active
constraints is the same as the constraint classification
method for satisfied constraints in Equation 36. Here in p-
Chekov, however, we use a constraint relaxation approach
to find active constraints, as shown in Algorithm 4. When

Prepared using sagej.cls

16 Journal Title XX(X)

Algorithm 4: ActiveConstraint
1 Function ActiveConstraint(δ, r):
2 Nactive ← 0
3 while Nactive == 0 do
4 rprevious ← r
5 if No constraint to relax then break
6 Relax the safety constraint for each waypoint by dstep
7 Find new solution Π with planning phase algorithm

and re-evaluate collision risk r
8 for i = 1, 2, . . . , N do
9 if ri > δi then Nactive ← Nactive + 1

ActiveConstraint() is called, it relaxes a small part of the
safety constraint for each waypoint and runs the planning
phase algorithm again to calculate the new ri for each
waypoint and conducts a risk test (line 7). If some of the risk
bounds are violated, they will be viewed as active constraints
(line 8 - 10). Otherwise, Algorithm 4 repeats line 4 - 10 until
it detects active constraints.

6.4 Detailed p-Chekov algorithm illustration
Algorithm 5 summarizes the p-Chekov motion planning and
execution system. Line 1 - 5 illustrates the deterministic
Chekov planner, which first calls the roadmap planner
to find a seed trajectory between the start and the goal.
If the roadmap planner fails to find a seed, it returns
failure. Otherwise, it calls the trajectory optimizer to
locally optimize this seed trajectory. Given this nominal
trajectory from the deterministic planner, line 6 calls the
state probability distribution estimation algorithm, and line 7
calls one of the collision probability estimation approaches
introduced in Section 6.2. With the estimated collision
risk and risk allocation, line 8 conducts a risk test to see
whether the risk bounds are satisfied at all waypoints. If
all the risk bounds are satisfied, Algorithm 5 goes to the
execution phase and calls the execution phase IRA algorithm
(Algorithm 3) to improve the solution trajectory. Otherwise,
the configurations at the violated waypoints will be added
as conflicts and new safety constraints will be added at
these waypoints. A new risk allocation will be calculated by
Algorithm 2, and a new solution will be computed from the
deterministic planner. This plan improvement procedure will
iterate until the chance constraint is satisfied.

The main innovation of p-Chekov includes the fast-
reactive deterministic Chekov planner that can generate
nominal trajectories for high-dimensional robots in real-
time, as well as the idea of risk allocation which plays the
role of extracting conflicts and guiding the deterministic
planner to approach to a feasible solution whose execution
failure rate is bounded by the chance constraint. In addition,
the application of quadrature-rule and supervised learning
techniques in collision risk estimation is key to the speed of
p-Chekov’s convergence to a feasible solution trajectory.

7 Chance-constrained motion planning
experiments

To demonstrate p-Chekov’s performance, 500 pairs of
start and goal poses in each of the two tabletop

Algorithm 5: P-Chekov
Input:
start, goal: start and goal configuration of the query
R, E : robot and environment collision models respectively
Mt: covariance matrix of process noises
Nt: covariance matrix of observation noises
α: risk reallocation parameter
∆: joint chance constraint for the whole trajectory
η, ε: risk tolerance and convergence tolerance
dstep: step size for penalty hit-in distance increase
Output:
Π: a solution trajectory

1 seed = RoadmapFindSolution(start, goal)
2 if seed is not None then
3 Initialize risk allocation δ with uniform allocation
4 Initialize list of conflicts Clist to be empty
5 Π = Optimizer(seed, Clist)
6 D =StateEstimation(Π, Mt, Nt)
7 r = CollisionProbabilityEstimation(Π,D,R, E)
8 violation = RiskTest(r, δ)
9 while violation is True do

10 foreach waypoint i where risk bound is violated do
11 Add the configuration at waypoint i to Clist

12 δ = RiskReallocation(r, δ, α,∆, η)
13 Π = Optimizer(Π, Clist)
14 violation = RiskTest(r, δ)

15 Chance constraint satisfied, start execution
16 Π = IterativeRiskAllocation(r, δ,Π, α,∆, η, ε)
17 Execute the updated trajectories from IRA
18 return Success
19 else
20 return Failure

environments introduced in Section 4, the “tabletop with
a pole” environment and the “tabletop with a container”
environment, are used for simulation experiments. Note
that the second environment not only has the narrow
spaces inside the container which are difficult for chance-
constrained motion planners, but also include difficult
test cases where the robot joints are close to their
limits. Section 7.1 describes the dynamics and observation
models used in the experiments, Section 7.2 shows
the performance of p-Chekov with collision estimation
module based on the Guass-Hermite quadrature rule, and
Section 7.3 demonstrates the experiments on p-Chekov with
the learning-based collision estimation module.

7.1 Experiment modeling
We simplify manipulator dynamics into a discrete-time linear
time-invariant dynamics model and use accelerations as
control inputs at each time step. All the joints are assumed to
be fully actuated and independent from each other, corrupted
by process noise mt,j ∼ N (0,Mt,j), where j = 1, 2, . . . , 7
denotes the degree of freedom (DOF) index, and

Mt,j =

[
σ2
x,j 0
0 σ2

v,j

]
. (37)

Using the linearization from Equation 8, we have:

x̄t,j =

[
1 ∆T
0 1

]
x̄t−1,j +

[
∆T 2/2

∆T

]
ūt−1,j + mt,j , (38)

Prepared using sagej.cls

Dai et al. 17

where x̄t,j includes the position and velocity of the jth joint
at time step t. We consider two different system observation
models in this paper: a joint configuration observation model
and an end-effector pose observation model.

7.1.1 Joint configuration observation model One natural
way of formulating the system observation model is to
observe the joint values directly through joint encoders. We
assume the value of each joint is corrupted by Gaussian
observation noises from the corresponding joint encoder, and
the noise at each joint is independent from each other. With
this fully observable model, all the joints are decoupled from
each other in both the dynamics model and the observation
model, which helps reduce the computation complexity of
state probability distribution estimation. The observation
model at each joint can be expressed as:

z̄t,j = x̄t,j + nt,j , nt,j ∼ N (0, Nt,j), (39)

where Nt,j is the noise covariance matrix of the jth joint
encoder.

7.1.2 End-effector pose observation model Although the
joint configuration observation model is very straightfor-
ward, in practice the joint encoder noises are usually not
the most significant source of errors. In comparison, camera
observations are often less accurate due to the inaccuracy
of camera itself and the uncertainties from the object it is
mounted to. For manipulators mounted on mobile robots,
for example, their head camera is often an important source
of observations. However, unexpected movements of the
mobile base caused by arm movements or external dis-
turbances can often lead to inaccurate estimations of the
relative position between the manipulator and the object to be
grasped in a pick-and-place task. In addition, in underwater
manipulation tasks, vehicle movements are inevitable due
to movements of the manipulator and disturbances from
ocean currents. In this case, the observations of the spatial
relationship between obstacles and the manipulator from
cameras mounted on the vehicle will inevitably be corrupted.
As a result, it is of more practical significance to incorporate
camera observations compared to using the fully observable
joint configuration observation model.

Ideally, observations of the whole manipulator should
be evaluated. However, this is nontrivial since it requires
modeling the forward kinematics mapping of all the points
on each link. In addition, directly modeling the observation
noises for the relative spatial relationship between the entire
manipulator and workspace objects is also difficult. Thus as a
start, an end-effector observation model is introduced in this
section to approximate the real-world camera observations.
The transformation matrix between workspace objects and
the end-effector can be expressed as:

T eeobj = T camobj · T eecam, (40)

where T camobj is the transformation from the workspace object
to the camera frame, and T eecam is the transformation from
the camera frame to the end-effector. Therefore, the noises
for observing T eeobj can be transformed into observation
noises for T eecam through the transformation matrix T camobj .
Then T eecam can be transformed into T camee through matrix
inversion. Therefore, we can approximate the observation

noises through corrupted observations of the end-effector
pose from the camera.

The observations of the end-effector can be expressed in
C-space through the nonlinear relationship:

zt = h(xt,nt), nt ∼ N (0, Nt), (41)

where h(xt, 0) is the forward kinematics, nt is the
observation noise, and Nt is the covariance matrix of the
observation noise. The linearization of this observation
model around a nominal configuration x∗t can be expressed
as:

zt − h(x∗t , 0) = Jt(xt − x∗t) +Wtnt, (42)

where

Jt =
∂h

∂x
(x∗t , 0). (43)

Since h(xt, 0) is the forward kinematics, Jt is the end-
effector Jacobian matrix at the nominal configuration x∗t . In
this way, the linearized system observation matrix becomes
the Jacobian matrix, which is usually easy to obtain during
computation. Again using the linearization from Equation 8,
the end-effector pose observation model given in Equation 42
can be rewritten as:

z̄t = Jtx̄t +Wtnt, nt ∼ N (0, Nt) (44)

Compared with the joint configuration observation model,
this end-effector observation model no longer decouples
different joints, thus it will inevitably require more
computation time in the state probability distribution
estimation step. In addition, since this is a partially
observable model, estimated noise variances will grow as the
robot executes along the desired trajectory. Hence we expect
that it will be more difficult for p-Chekov to find solutions
that satisfy the chance constraint using this end-effector
observation model. Section 7.2 will compare quadrature-
based p-Chekov’s performance with these two different
observation models empirically, whereas Section 7.3 will
focus only on the results for the end-effector observation
model when testing the learning-based p-Chekov since it is
the more realistic yet challenging one.

7.2 Quadrature-based p-Chekov experiment
results

We focus on evaluating the initial feasible solution returned
by the p-Chekov planning phase algorithm in Section 7.2.1,
and then look at the improvement the execution phase IRA
algorithm induces in Section 7.2.2. Baxter’s specification
indicates that its worst case accuracy of joints is ±0.25
degree, which is about ±0.0044 rad. Hence in the
experiments in this paper, the standard deviation of noises
during execution is set to 0.0044 rad. The collision risk of
a returned solution trajectory is evaluated with 100 noisy
executions.

To assess the chance constraint satisfaction performance
of p-Chekov, we provide the definition of chance constraint
satisfied test cases. If p-Chekov works perfectly, the 100
independent executions for a particular solution trajectory
should all have their probability of collision equal to the

Prepared using sagej.cls

18 Journal Title XX(X)

chance constraint. For example, if the chance constraint
allows for a 10% collision probability, the probability of
collision happening during an execution should be 10%.
Then the number of failures out of the 100 executions follows
a binomial distribution with the number of independent
experiments n = 100 and the probability of occurrence
in each experiment p = 0.1. The cumulative probability
distribution function of binomial distributions can be
expressed as:

F (k;n, p) = Pr(X ≤ k) =

k∑
i

(
n

i

)
pi(1− p)n−i (45)

For n = 100 and p = 0.1, we can calculate from Equation 45
that the probability of having less than or equal to 10
failures out of 100 executions is only about 56%. Similarly,
if the chance constraint is 5%, then the probability of
having less than or equal to 5 failures in 100 executions
is about 59%. However, to better represent the actual
collision risk of solutions returned by p-Chekov, we want
the classification error for chance constraint satisfied test
cases to be small, so that we are confident to say the test
case has violated the chance constraint when there are more
than the corresponding number of executions end up in
collision. If we define chance constraint satisfied test cases
as the ones where the collision rate out of 100 executions is
lower than or equal to 1.5 times of the chance constraint,
Equation 45 shows that for p = 0.1 the classification
accuracy is about 94%, and for p = 0.05 the accuracy is
around 86%. Consequently, we decide to use 1.5 times of the
chance constraint as the boundary between chance constraint
satisfied cases and chance constraint violated cases.

Since theoretically p-Chekov only has probabilistic
guarantees for waypoints instead of the entire trajectory,
we distinguish between continuous-time and discrete-time
chance constraint satisfaction performances. If the 100 noisy
executions of a test case shows that the average continuous-
time (or waypoint) collision rate is within 1.5 times of the
collision chance constraint, then we say this test case satisfies
the continuous-time (or discrete-time) chance constraint.
Only the continuous-time satisfaction is the true criterion
for success, but we use discrete-time performance to show
the impact of edge collisions, i.e. the collisions in between
waypoints.

7.2.1 Planning phase experiment results Table 5 and
Table 6 show quadrature-based p-Chekov’s performance
with different chance constraints using joint configuration
observation model in the “tabletop with a pole” environment
and the “tabletop with a container” environment respectively.
The first six rows of Table 5 and 6 compare deterministic
Chekov and the quadrature-based p-Chekov planning phase
algorithm. As expected, p-Chekov doesn’t perform as well
as deterministic Chekov in terms of planning time and
the average length of execution trajectories, because p-
Chekov usually pushes the solution away from the locally
optimal solution deterministic Chekov returned in order to
ensure safety. However, the overall collision rate (averaged
over 500 test cases with 100 noisy executions each) shows
the superiority of p-Chekov solutions in the presence
of noises. From Table 5 we can see that the overall

Table 5. Quadrature-based P-Chekov in Tabletop with a Pole
Environment with Joint Observation and Various Chance
Constraints

Chance Constraint 10% 5%
Planning
Time (s)

deterministic Chekov 1.10 1.38
p-Chekov 5.09 6.44

Overall
Collision Rate1

deterministic Chekov 33.82% 33.84%
p-Chekov 7.70% 7.63%

Average Path
Length (rad)2

deterministic Chekov 0.51 0.51
p-Chekov 0.54 0.54

P-Chekov
Performance

continuous chance constraint satis-
faction rate3 91.57% 91.57%

continuous
satisfied
cases4

average iteration number 1.41 1.47
average collision rate 0.02% 0.01%
average risk reduction9 0.32 0.32

continuous
violated
cases5

average iteration number 2.82 2.93
average collision rate 86.89% 86.30%
average risk reduction -0.35 -0.33

discrete chance constraint satisfac-
tion rate6 93.57% 92.77%

discrete
satisfied
cases7

average iteration number 1.47 1.52
average collision rate 0.04% 0.01%
average risk reduction 0.23 0.22

discrete
violated
cases8

average iteration number 2.50 2.64
average collision rate 84.79% 83.14%
average risk reduction -0.40 -0.35

1 Average collision rate over 100 noisy executions for all 500 test cases.
2 Average length of actual execution trajectories.
3 Percentage of test cases where the average continuous-time collision

rate over 100 noisy executions satisfies the chance constraint.
4 P-Chekov performance over the test cases where the chance

constraint is satisfied by continuous-time collision rate (viewed as
success cases).

5 P-Chekov performance over the test cases where the chance
constraint is violated by continuous-time collision rate (viewed as
failure cases).

6 Percentage of test cases where the average waypoint collision rate
over 100 noisy executions satisfies the chance constraint.

7 P-Chekov performance over the test cases where the chance
constraint is satisfied by waypoint collision rate.

8 P-Chekov performance over the test cases where the chance
constraint is violated by waypoint collision rate.

9 The difference between the average collision rate of p-Chekov
solutions and that of deterministic Chekov solutions.

collision rate is reduced by more than 20% compared with
deterministic solutions, while the average path length is only
increased by 0.3 rad. Since the “tabletop with a container”
environment is much more complicated due to the narrow
spaces, p-Chekov’s performance shown in Table 6 is much
worse compared to Table 5. Despite the difficulty in this
environment, p-Chekov can reduce the collision rate by about
30% with both chance constraints.

The remaining rows of Table 5 and 6 focus on the chance
constraint satisfaction performance of p-Chekov. From both
tables we can see that the discrete and continuous chance
constraint satisfaction performances are very close, which
means edge collisions in these experiments don’t have
significant influence. Comparing p-Chekov’s performance in
the continuous chance constraint satisfied cases and violated
cases, we can see that the satisfied cases take much fewer
iterations than the violated cases and also have much lower
average collision rate. In addition, in the satisfied cases p-
Chekov successfully reduces the average collision rate by
0.3 - 0.5, meanwhile in the violated cases the collision
risk actually increased. This means in the violated cases, p-
Chekov is failing to find safe solutions that satisfy the chance

Prepared using sagej.cls

Dai et al. 19

Table 6. Quadrature-based P-Chekov in Tabletop with a
Container Environment with Joint Observation and Various
Chance Constraints

Chance Constraint 10% 5%
Planning
Time (s)

deterministic Chekov 1.29 1.61
p-Chekov 15.47 19.80

Overall
Collision Rate

deterministic Chekov 66.56% 66.75%
p-Chekov 36.29% 36.83%

Average Path
Length (rad)

deterministic Chekov 0.63 0.63
p-Chekov 0.76 0.77

P-Chekov
Performance

continuous chance constraint satis-
faction rate3 61.30% 60.49%

continuous
satisfied
cases

average iteration number 2.74 2.87
average collision rate 0.09% 0.05%
average risk reduction 0.54 0.54

continuous
violated
cases

average iteration number 6.28 6.38
average collision rate 93.64% 92.66%
average risk reduction -0.08 -0.07

discrete chance constraint satisfac-
tion rate6 69.65% 69.04%

discrete
satisfied
cases

average iteration number 3.58 3.78
average collision rate 0.05% 0.04%
average risk reduction 0.50 0.50

discrete
violated
cases

average iteration number 5.31 5.36
average collision rate 92.80% 92.09%
average risk reduction -0.14 -0.13

constraint, and might get the trajectories close to other
objects while pushing them away from some obstacles. For
the chance constraint satisfied cases, in contrast, the collision
rate is much lower than the chance constraint, meaning that
p-Chekov is overly conservative. This is potentially caused
by the conservative quadrature-based collision probability
estimation approach and the conservative risk allocations.
Section 7.2.2 will show p-Chekov’s performance with the
execution phase IRA algorithm, which aims at providing less
conservative solutions.

If we compare p-Chekov’s performance with different
chance constraints, we can see that the overall collision
rate is not necessarily going down when the chance
constraint decreases. One possible cause for this is, when the
chance constraint is getting tighter, more test cases become
infeasible, thus the solutions p-Chekov found for those cases
are likely to end up in collision. This shows the importance
of filtering out infeasible test cases in order to better see p-
Chekov’s performance, which we will present later in this
section.

As described in Section 7.1, the partially-observable
end-effector observation model is more difficult but more
realistic in practical applications. We now investigate p-
Chekov’s performance with this end-effector observation
model. Figure 4 shows the experiment result breakdown in
the “tabletop with a pole” environment and the “tabletop
with a container” environment respectively, with 10% chance
constraint and noise level 0.0044 rad. The test cases are
divided into five groups: (1) chance constraint is satisfied by
the initial deterministic Chekov solution, (2) continuous-time
collision rate satisfies the chance constraint, (3) continuous-
time collision rate violates the chance constraint but discrete-
time collision rate satisfies it, (4) discrete-time collision rate
violates the chance constraint but the p-Chekov algorithm
terminated before it hits its iteration number upper bound,
and (5) p-Chekov terminates because it hit the iteration limit.

Figure 4. Quadrature-based p-Chekov statistics breakdown for
experiments with end-effector observation, 0.0044 noise
standard deviation and 10% chance constraint

From Figure 4 we can see that in 60.64% of the test
cases in the “tabletop with a pole” environment, the chance
constraint is satisfied through the risk-aware p-Chekov’s
effort, meanwhile in 9.84% of the test cases this constraint is
violated by the continuous-time collision rate but satisfied by
the waypoint collision rate. As mentioned previously, edge
collision is one of the drawbacks of trajectory discretization,
thus we need to balance the computation complexity and
plan safety when deciding the number of waypoints. Figure 4
also shows that in a small portion (16.87%) of the test cases,
the deterministic Chekov solutions have already satisfied the
chance constraint and no p-Chekov iterations are needed. No
cases hit p-Chekov’s iteration upper bound, while 12.65%
test cases are failures caused by other reasons than edge
collisions. The “tabletop with a container” environment
shows a similar breakdown, where 11.40% of the test cases
fail because of edge collisions, and 41.35% fail because of
other reasons. We picked some test cases out of this “other
failures” category to closely inspect the failure reason, and
noticed that most of these test cases have either start or
goal pose very close to obstacles. This means a lot of these
cases might be infeasible because the start or goal collision
probability has already violated the chance constraint, which
makes the chance-constrained query infeasible.

Table 7 demonstrates detailed performance of quadrature-
based p-Chekov with end-effector pose observations under
different levels of noise disturbance. The same 500 test cases
in each environment are evaluated, and the chance constraint
is also set to 10%. Compared with Table 5, we can see that
end-effector pose observation model makes it much more
difficult for p-Chekov to find feasible solutions that satisfy

Prepared using sagej.cls

20 Journal Title XX(X)

Table 7. Quadrature-based P-Chekov in Two Environments with End-effector Observation, 10% Chance Constraint and Various
Noise Levels

Environment Tabletop with a Pole Tabletop with a Container
Noise Standard Deviation (rad) 0.0044 0.0022 0.0011 0.0044 0.0022 0.0011

Planning Time (s)
deterministic Chekov 1.13 1.36 1.11 1.31 1.52 1.24

p-Chekov 24.17 16.08 8.38 49.60 34.67 17.47
Overall Collision

Rate
deterministic Chekov 35.88% 34.27% 33.40% 66.95% 65.77% 65.04%

p-Chekov 21.46% 17.42% 14.12% 53.11% 48.82% 43.51%
Average Path
Length (rad)

deterministic Chekov 0.51 0.51 0.51 0.63 0.63 0.63
p-Chekov 0.75 0.63 0.57 1.11 0.91 0.76

P-Chekov
Performance

continuous chance constraint satisfaction rate 77.51% 81.33% 85.34% 44.20% 49.08% 54.79%

continuous
satisfied cases

average iteration number 5.41 3.57 2.25 6.90 4.81 3.50
average collision rate 0.13% 0.05% 0.02% 0.20% 0.11% 0.10%
average risk reduction 0.30 0.29 0.30 0.46 0.48 0.48

continuous
violated cases

average iteration number 9.48 6.63 5.01 12.12 9.11 6.26
average collision rate 91.70% 93.05% 96.21% 95.01% 95.02% 95.25%
average risk reduction -0.37 -0.37 -0.40 -0.12 -0.12 -0.11

discrete chance constraint satisfaction rate 87.35% 86.55% 88.96% 55.60% 59.27% 62.32%

discrete satisfied
cases

average iteration number 5.91 3.80 2.43 7.87 5.74 3.83
average collision rate 0.12% 0.06% 0.05% 0.16% 0.33% 0.14%
average risk reduction 0.25 0.22 0.21 0.47 0.45 0.43

discrete violated
cases

average iteration number 8.99 6.32 4.39 12.20 8.84 6.27
average collision rate 74.10% 85.76% 93.02% 88.27% 92.54% 94.60%
average risk reduction -0.26 -0.41 -0.48 -0.11 -0.17 -0.16

Table 8. Quadrature-based P-Chekov in Tabletop with a Pole Environment with End-effector Observation, 0.0044 Noise Level and
10% Chance Constraint

Step Size of the Collision Penalty Hit-in Distance Increase (m) 0.03 0.04 0.05 0.06

Planning Time (s)
deterministic Chekov 1.35 1.39 1.13 1.35

p-Chekov 51.92 37.00 24.17 26.08

Overall Collision Rate
deterministic Chekov 35.89% 35.87% 35.88% 36.05%

p-Chekov 21.95% 21.82% 21.46% 23.48%

Average Path Length (rad)
deterministic Chekov 0.51 0.51 0.51 0.51

p-Chekov 0.72 0.74 0.75 0.78

P-Chekov Performance

continuous chance constraint satisfaction rate 76.91% 76.71% 77.51% 74.50%

continuous
satisfied cases

average iteration number 8.04 6.61 5.41 4.41
average collision rate 0.11% 0.17% 0.13% 0.18%
average risk reduction 0.30 0.30 0.30 0.29

continuous
violated cases

average iteration number 13.87 11.38 9.48 8.57
average collision rate 92.28% 92.32% 91.70% 90.13%
average risk reduction -0.38 -0.37 -0.37 -0.34

discrete chance constraint satisfaction rate 85.94% 84.74% 87.35% 83.73%

discrete satisfied
cases

average iteration number 8.93 7.04 5.91 4.87
average collision rate 0.19% 0.16% 0.12% 0.11%
average risk reduction 0.25 0.24 0.25 0.24

discrete violated
cases

average iteration number 12.27 11.27 8.99 8.62
average collision rate 75.30% 79.85% 74.10% 77.45%
average risk reduction -0.28 -0.30 -0.26 -0.29

the chance constraint. This is expected because, in contrast
to fully-observable models whose variance estimation will
converge, end-effector model doesn’t have full information
of robot states and the variance estimation will keep
growing along the trajectory, leading to p-Chekov’s failure
in finding feasible solutions in more test cases. Additionally,
Table 7 shows a larger difference between continuous-time
and discrete-time chance constraint satisfaction performance
compared to Table 5, meaning that edge collisions occur
in more test cases. In Table 7, the overall collision rate
is reduced at the expense of average execution trajectory
length. Comparing the results for different noise levels, we
can see that the deterministic Chekov solutions have similar
collision rates but the p-Chekov solutions collide much less
with lower noise levels. In the constraint satisfied test cases,
p-Chekov is taking many more iterations when the noise
level is high, but the average risk reductions with different

noise levels are similar. In the “tabletop with a container”
environment, both the overall collision rates and the chance
constraint satisfaction rates under all the three noise levels
are only about 50%. Despite the high overall collision rates,
p-Chekov still successfully reduced the collision risk by over
0.45 in the constraint satisfied test cases.

In the experiments presented in this section, the constraints
added to the waypoints where the allocated risk bound
is violated include an increase in the collision penalty
hit-in distance. Hence the step size of this increase
could potentially influence both the conservativeness of
the solution trajectory and the number of iterations it
takes to find a feasible solution. We compared p-Chekov’s
performance with four different step sizes in the “tabletop
with a pole” environment and show the results in Table 8. The
chance constraint is set to 10% and the standard deviation of
noises is 0.0044 rad. Different columns in Table 8 show that

Prepared using sagej.cls

Dai et al. 21

Figure 5. Quadrature-based p-Chekov statistics breakdown for
feasible cases with end-effector observation, 0.0044 noise
standard deviation and 10% chance constraint

Table 9. Results in Potentially Feasible Test Cases with Joint
Value Observation, Noise Level 0.0044 and Chance Constraint
5%

Environment
Tabletop
with a
Pole

Tabletop
with a
Con-
tainer

Planning
Time (s)

deterministic Chekov 1.28 1.29
p-Chekov 5.40 10.44

Overall
Collision Rate

deterministic Chekov 28.98% 43.49%
p-Chekov 1.60% 6.13%

Average Path
Length (rad)

deterministic Chekov 0.51 0.59
p-Chekov 0.52 0.64

P-Chekov
Performance

continuous chance constraint satis-
faction rate

98.40% 93.80%

continuous
satisfied
cases

average iteration number 1.15 2.02
average collision rate 0.00% 0.01%
average risk reduction 0.29 0.41

continuous
violated
cases

average iteration number 4.00 8.19
average collision rate 100.00%98.68%
average risk reduction -0.43 -0.16

discrete chance constraint satisfac-
tion rate

99.00% 96.20%

discrete
satisfied
cases

average iteration number 1.18 2.25
average collision rate 0.00% 0.01%
average risk reduction 0.19 0.31

discrete
violated
cases

average iteration number 3.20 6.37
average collision rate 100.00%98.47%
average risk reduction -0.62 -0.15

using a smaller penalty distance increase step doesn’t make a
big difference in p-Chekov’s performance except for a longer
planning time. Therefore, in the experiments in this paper,
we set the step size of the collision penalty hit-in distance
increase to 0.05 m.

Table 10. Results in Potentially Feasible Test Cases with
End-effector Observation, Noise Level 0.0044 and Chance
Constraint 10%

Environment
Tabletop
with a
Pole

Tabletop
with a
Con-
tainer

Planning
Time (s)

deterministic Chekov 1.10 1.27
p-Chekov 19.34 31.17

Overall
Collision Rate

deterministic Chekov 27.51% 41.04%
p-Chekov 11.39% 16.46%

Average Path
Length (rad)

deterministic Chekov 0.51 0.60
p-Chekov 0.68 0.84

P-Chekov
Performance

continuous chance constraint satis-
faction rate

87.60% 82.20%

continuous
satisfied
cases

average iteration number 4.14 5.19
average collision rate 0.08% 0.11%
average risk reduction 0.25 0.33

continuous
violated
cases

average iteration number 10.52 10.35
average collision rate 88.50% 88.02%
average risk reduction -0.44 -0.13

discrete chance constraint satisfac-
tion rate

94.40% 86.80%

discrete
satisfied
cases

average iteration number 4.82 5.49
average collision rate 0.13% 0.10%
average risk reduction 0.19 0.28

discrete
violated
cases

average iteration number 6.94 10.32
average collision rate 73.39% 86.59%
average risk reduction -0.39 -0.23

As previously mentioned, a lot of test queries where
p-Chekov fails have their start or goal very close to
obstacles. In these cases, feasible solutions might not exist
if the collision probability of the start or goal has already
exceeded the chance constraint. Therefore, we introduce a
pre-processing procedure before running p-Chekov in order
to filter out these potentially infeasible test queries. We
estimate the collision probability of the start and goal based
on the nominal trajectory computed by deterministic Chekov,
and discard the test cases where the collision probability
of either the start or goal exceeds 1.5 times of the chance
constraint. Although it is possible that some of these cases
might be feasible since our collision probability estimation
approach is conservative, most of them are highly likely
to be infeasible compared to other cases where the start
and goal has low estimated collision probabilities. We pick
500 test cases that have passed this pre-processing and
call them “feasible cases” in short, to distinguish from the
unfiltered 500 test cases used in previous experiments in
this section. Figure 5 shows the statistics breakdown for the
experiments with the end-effector observation model in the
two tabletop environments after filtering out the potentially
infeasible test cases. The chance constraint is set to 10% and
the noise standard deviation is 0.0044 rad. Compared with
Figure 4, it is obvious that the chance constraint satisfaction
rate has significantly increased. In “tabletop with a pole”
environment we can see that in 25.20% of the test cases, the
initial deterministic solution has already satisfied the chance
constraint, and there are 62.40% test cases where the chance
constraint is satisfied after p-Chekov risk-aware iterations.
Only 6.80% of the test cases fail because of edge collisions,
and 5.40% fail for other reasons. Similarly, the “tabletop
with a container” environment also shows that 65.20% of
test queries can satisfy the chance constraint after p-Chekov

Prepared using sagej.cls

22 Journal Title XX(X)

Table 11. Improvement from Iterative Risk Allocation for Experiments with Both Observation Models

Environment Tabletop with a Pole Tabletop with a Container
Test Case Filtering All Cases Feasible Cases All Cases Feasible Cases

Observation Model2 Joint End-
Effector Joint End-

Effector Joint End-
Effector Joint End-

Effector
Continuous Chance

Constraint Satisfaction Rate3
Without IRA 85.62% 69.92% 96.58% 82.16% 53.57% 41.72% 90.94% 76.80%

With IRA 88.44% 69.92% 97.72% 84.21% 55.00% 43.08% 93.44% 77.87%
Discrete Chance Constraint

Satisfaction Rate4
Without IRA 88.44% 81.49% 97.83% 90.35% 64.29% 55.33% 94.06% 82.67%

With IRA 90.00% 82.26% 98.86% 91.23% 63.81% 54.20% 95.94% 83.47%
Average Trajectory Length

(rad)5
Without IRA 0.62 0.85 0.64 0.81 0.81 1.10 0.74 0.94

With IRA 0.60 0.80 0.63 0.77 0.78 1.03 0.72 0.88
1 The results shown are averaged from the test cases where the IRA number of iteration is non-zero only. The test cases where all constraints

are already active in the planning phase solution are not included.
2 The chance constraint for experiments with joint configuration observation model is set to 5%, and the chance constraint for experiments with

end-effector pose observation model is set to 10%.
3 Percentage of the test cases where the average continuous-time collision rate over 100 noisy executions satisfies the chance constraint.
4 Percentage of the test cases where the average waypoint collision rate over 100 noisy executions satisfies the chance constraint.
5 Average length of actual execution trajectories instead of nominal solution trajectories.

risk-aware iterations, in contrast to the 30.52% shown
in Figure 4. In this environment, the difference between
the experiment results before and after pre-processing is
much more noticeable than in the “tabletop with a pole”
environment, indicating that more cases are infeasible in this
complicated environment with narrow spaces.

Table 9 and Table 10 compare p-Chekov’s performance
with joint configuration observation model and with end-
effector pose observation model in feasible cases for both
environments. Compared with Table 5 to 7, it is noticeable
that the results are significantly improved after filtering
out potentially infeasible cases. In Table 9 we can see
that with joint configuration observations, p-Chekov can
achieve a chance constraint satisfaction rate of above
90% in both environments. Especially in the “tabletop
with a container” environment, p-Chekov shows powerful
collision risk reduction ability by having an average risk
reduction of 0.41 in satisfied cases with only a small
increase in the average execution trajectory length. With
end-effector observations, as shown in Table 10, although
the performance is not as good compared to Table 9, the
constraint satisfaction rates in both environments are still
above 80%. The overall collision risks are significantly
reduced compared to deterministic Chekov’s solutions, and
the average risk reductions in constraint satisfied cases are
also very high in both environments. However, in these
constraint satisfied cases in Table 10, the collision risk is
much lower than the chance constraint level, and the average
execution trajectory lengths are much longer compared
with deterministic Chekov’s solutions. This indicates that
p-Chekov’s planning phase algorithm can return overly
conservative solutions, thus in Section 7.2.2, we will use the
IRA algorithm in p-Chekov’s execution phase to improve
solution quality.

7.2.2 Improvement from iterative risk allocation This
section presents the improvement from using the IRA
algorithm introduced in Section 6.3.2. Table 11 compare
the solutions from p-Chekov’s planning phase algorithm and
from using an IRA procedure after the planning phase in both
environments. The comparison considers three main aspects:
the percentage of test cases where the continuous-time
collision rate satisfies the chance constraint, the percentage

of test cases where the waypoint collision rate satisfies
the chance constraint, and the average trajectory length
over 100 noisy executions. The columns of “All Cases”
refer to the results of the original 500 test cases, and
the columns of “Feasible Cases” refer to the results of
the 500 test cases after filtering out potentially infeasible
cases based on the collision probability of start and end
poses. Table 11 shows that IRA can slightly improve the
chance constraint satisfaction rate, for both continuous-time
and discrete-time satisfactions, especially in the relatively
difficult “tabletop with a container” environment. The
improvement on average trajectory length is the main effect
of IRA. From Table 11 we can see that the solutions
with IRA are much shorter, indicating that the trajectory
quality is improved without sacrificing the chance constraint
satisfaction rate. These results prove that using IRA during
execution phase can effectively redistribute risk bounds
among different waypoints and improve the solution quality
by providing less conservative trajectories that also satisfy
the chance constraint.

7.3 Learning-based p-Chekov experiment
results

The results from Section 7.2 indicate that the planning
time of quadrature-based p-Chekov will severely constrain
its application in real-time planning tasks that require fast-
reaction. In this section, we first compare the training
performance of four different classes of machine learning
methods in the same two tabletop environments, and then
demonstrate the performance of neural network-based p-
Chekov, the best performer among the four, with 500 feasible
test cases in each environment.

7.3.1 Comparison between different regression methods
In p-Chekov, since the nominal trajectories generated by
the deterministic planner are guaranteed to be collision-free
without the presence of noise, the nominal configurations
inputted into the collision estimator component is more
likely to lie in the collision-free configuration space.
Therefore, the 60000 samples in each environment include
two parts: 20000 have their mean configurations sampled
from the entire configuration space (referred to as Sample
Set 1), and 40000 have their mean configurations sampled

Prepared using sagej.cls

Dai et al. 23

Table 12. Best Parameters in Kernel Ridge Regression and Random Forest Regression

Regressor 8000 training data 18000 training data 38000 training data
RBF Kernel Ridge Regression α = 0.2, γ = 0.3 α = 0.2, γ = 0.3 α = 0.2, γ = 0.5

Polynomial Kernel Ridge Regression α = 0.1, degree = 5 α = 0.1, degree = 6 α = 0.1, degree = 6

Matern Kernel Ridge Regression α = 0.1, ν = 2.29,
length scale = 1.5

α = 0.01, ν = 1.14,
length scale = 2.5

α = 0.01, ν = 1.44,
length scale = 1.66

Random Forest Regression
estimators = 300,
min split = 5,
min leaf = 3

estimators = 600,
min split = 5,
min leaf = 3

estimators = 600,
min split = 4,
min leaf = 3

purely from the deterministic collision-free configuration
space (referred to as Sample Set 2). 2000 samples are
held out for testing in every experiment no matter how
large the training size is. Note that even though the mean
configuration is not in collision, the associated collision risk
is not necessarily zero if the standard deviation is nonzero.
Having more samples taken from the deterministic collision-
free space can better represent the practical data p-Chekov
faces during online planning. All the 60000 samples from
both environments are used when training neural networks,
while we only use Sample Set 1 and half of Sample Set 2
to train Scikit Learn regressors because they get very slow
when the data size exceeds 40000.

In order to find the best parameters for the regressors, we
conduct grid search on kernel ridge regressors and random
forest regressors, and use gradient descent on Gaussian
process regressors. Table 12 shows the best parameters
found for different kernels in kernel ridge regression as well
as random forest regression when the training data have
different sizes. Since gradient descent for Gaussian process
is applied during training to maximize the log marginal
likelihood, the best parameters are not shown in Table 12.
All the experiments in this section use the best parameters
we found for the corresponding data size.

The comparison between different regression methods on
different datasets is shown in Table 13. In each dataset, 2000
randomly selected data points are used for testing and the
rest are used for training. Mean squared error (MSE) and
R2 score are used to measure the test accuracy for different
regressors. Given the predicted value ŷi and the true value yi
for each test data point, MSE is calculated by:

MSE(y, ŷ) =
1

nsamples

nsamples∑
i=1

(yi − ŷi)2, (46)

and the R2 score is calculated by:

R2(y, ŷ) = 1−
∑nsamples

i=1 (yi − ŷi)2∑nsamples

i=1 (yi − ȳi)2
, (47)

where ȳ = 1
nsamples

∑nsamples

i=1 yi. Here the R2 scores are
computed using the test data, and the MSE scores and
standard deviations are computed using cross validation on
the training data. In terms of the training time performance,
Gaussian process regression and Matern kernel ridge
regression are the slowest. Gaussian process regression
conducts gradient descent to search for best parameters
during training, and also outputs distributions instead of
single predicted values, which would explain its low training
speed. As for Matern kernel ridge regression, the best ν
parameter found by grid search is not one of the default

Table 13. Comparison of Different Regression Methods

Data Size
Regression

Method
R2

Score
MSE
Error

Std of
MSE

Training
Time (s)

Set 1

10000

Kernel
Ridge

RBF 0.792 0.0217 0.0006 5.30
Polynomial 0.731 0.0314 0.0010 7.37

Matern 0.801 0.0210 0.0006 40.83
Random Forest 0.799 0.0217 0.0007 1.76

Gaussian Process 0.791 0.0221 0.0006 140.15

20000

Kernel
Ridge

RBF 0.842 0.0180 0.0005 31.78
Polynomial 0.783 0.0261 0.0007 58.21

Matern 0.851 0.0172 0.0005 311.11
Random Forest 0.854 0.0166 0.0006 4.80

Gaussian Process 0.844 0.0181 0.0005 1108.75

Set 2

10000

Kernel
Ridge

RBF 0.616 0.0077 0.0003 5.29
Polynomial 0.551 0.0097 0.0004 8.29

Matern 0.629 0.0075 0.0003 79.25
Random Forest 0.593 0.0083 0.0003 5.48

Gaussian Process 0.626 0.0077 0.0003 166.39

20000

Kernel
Ridge

RBF 0.682 0.0066 0.0002 33.27
Polynomial 0.603 0.0085 0.0002 42.73

Matern 0.697 0.0063 0.0002 213.28
Random Forest 0.661 0.0071 0.0002 4.23

Gaussian Process 0.689 0.0066 0.0002 1337.29

Both
Sets

40000

Kernel
Ridge

RBF 0.847 0.0117 0.0002 435.60
Polynomial 0.773 0.0165 0.0002 261.03

Matern 0.855 0.0110 0.0002 1619.93
Random Forest 0.868 0.0107 0.0002 18.08

Gaussian Process 0.849 0.0113 0.0002 8833.86

values provided by Scikit Learn, and this would incur a
considerably higher computational cost (approximately 10
times higher) since they require to evaluate the modified
Bessel function. In contrast, random forest regressor tends to
take a very short time to train, and its training time also grows
relatively slowly as the size of training data increases. In
terms of prediction accuracy, Matern kernel ridge regression
and random forest regression have the best performance
when the training data include Sample Set 1 data, while
polynomial kernel shows the worst performance. RBF kernel
ridge regression shows slightly better performance compared
to random forest regression when the training data are purely
from Sample Set 2. When provided with 38000 training
data, the MSE error of random forest regressor is relatively
satisfactory, and a number of manually selected test points
showed that the prediction is very close to the “ground truth”
risk value.

If we compare the results between training on Sample Set
1 and training on Sample Set 2, we can see that Sample Set
2 tests show a smaller MSE error but a lower R2 score. This
is because the Sample Set 2 data points are all sampled from
the collision-free configuration space, which would tend to
have lower collision risk than the in-collision configurations.
Therefore, it is reasonable that a lower absolute value leads
to a lower MSE error. However, since R2 scores measures

Prepared using sagej.cls

24 Journal Title XX(X)

Figure 6. Minimum loss as a function of hidden layer numbers

the relative error compared to the variance of the original
data, it won’t decrease as the absolute values of data points
decrease. One hypothesis about why the R2 score is lower
compared to Sample Set 1 is that Sample Set 2 tends to
have “ground-truth” collision risk close to 0, and there’s
not enough variety on the data distribution to ensure that
the regressor can capture the data structure. This conclusion
shows that although in practical motion planning tasks the
configurations that p-Chekov needs to predict collision risk
for are more likely to be in the collision-free configuration
space, having data from the entire configuration space helps
the regressor to learn the data distribution better and achieve
higher prediction accuracy.

The neural networks used in this paper are fully connected
networks with ReLU activation for the input layer and hidden
layers. Adam (Kingma and Ba 2014) optimizer is used,
and the batch size is set to 64. Sigmoid is used as the
output layer activation function since the output is collision
probability. MSE is used as the loss function because this
regression problem aims at minimizing the prediction error.
All the 60000 data points are used in the neural network
experiments: 58000 are for training and 2000 are for testing.
In all the neural networks tested in this paper, the number
of units in the input layer is kept as 1024, and all the output
layer have 1 unit to match the sigmoid output. We compare
the networks’ performance with different numbers of hidden

Table 14. Performance of Neural Network with 9 Hidden Layers
with 512 Units Each

Number of
Training
Epochs

Final
Training

Loss

Final
Validation

Loss

Minimum
Validation

Loss

Number of
Epoch for
Minimum
Validation

Loss
50 0.001371 0.001698 0.001645 49
70 0.001031 0.001519 0.001437 63

100 0.000426 0.001400 0.001302 99

Figure 7. Loss and training epoch relationship for networks
with 9 hidden layers with 512 units each

layers in Figure 6, where the top figure has 512 units in
each hidden layer and the bottom one has 216. The vertical
axis in these two figures shows the minimum training and
validation losses within 50 training epochs. From Figure 6
we can see that when the number of hidden layers with
512 units lies between 0 and 9, the neural networks have
relatively stable performance, and the minimum loss has a
decreasing trend as the number of layers increases. However,
when the number of hidden layer reaches 10, the neural
networks start to have trouble minimizing the MSE loss. One
of the potential reasons for this phenomenon is that when the
neural networks get very deep, the input to the last activation
layer, the sigmoid layer, might get very large. Since sigmoid
function has very small gradient when the input is large,
this could potentially cause the optimizer not being able to
properly conduct gradient descent, which then causes high
training losses and validation losses. When there are 216
units in hidden layers, the minimum loss curves show similar
trends, but the networks have a wider range of hidden layer
numbers where the optimization is stable since the layers are
narrower. This is potentially related to the fact that when the
width of each layer is smaller, it takes the networks more
layers to reach saturation where the gradient of activation
function approaches zero. The minimum validation loss in
the bottom figure of Figure 6 is 0.0017, when the number of
hidden layers is 6, and in the top figure the minimum reaches
0.0016, when the number of hidden layers is 9. Therefore,
the optimal network structure among all tested ones has 9
hidden layers with 512 units each, an input layer with 1024
units and an output layer with one sigmoid activation unit.

Prepared using sagej.cls

Dai et al. 25

Figure 8. Learning-based p-Chekov statistics breakdown for
feasible cases with end-effector observation, 0.0044 noise
standard deviation and 10% chance constraint

Table 14 and Figure 7 show the performance of the optimal
structure network, 9 hidden layers with 512 units each, when
more training epochs are provided. Table 14 compares their
performance in terms of the training and validation loss
after the last epoch’s training (the “Final Training Loss” and
“Final Validation Loss” columns), the minimum validation
loss among all epochs (the “Minimum Validation Loss”
column), and the number of epoch where they reach this
minimum (the “Number of Epoch for Minimum Validation
Loss” column). As we can see from Table 14, both the
training loss and the validation loss are decreasing given
more training epochs, but the improvement for validation
loss is much smaller compared to that of training loss.
This means that as we exploit the training data more,
although the performance of neural networks will gradually
improve, this improvement is more about better fitting the
training data structure than generalizing to the entire C-
space. Therefore, we would expect very limited improvement
or even decreasing validation performance when training
more than 100 epochs. Figure 7 also shows that the validation
loss decreases drastically in the first 30 epochs and then starts
to drop slowly, whereas the training loss is still decreasing
relatively fast and diverges from the validation loss in the
final 30 epochs.

7.3.2 Neural network learning-based p-Chekov experi-
ment results Section 7.3.1 shows that the best performer
among all the tested machine learning methods on this
collision risk regression problem is the neural network with
9 hidden layers with 512 units in each layer, thus it is used
in this section to evaluate the performance of learning-based
p-Chekov. Figure 8 demonstrates the statistics breakdown
of the neural network learning-based p-Chekov experiments

Table 15. Results in Potentially Feasible Test Cases with
End-effector Observation, Noise Level 0.0044 and Chance
Constraint 10%

Environment
Tabletop
with a
Pole

Tabletop
with a
Con-
tainer

Planning
Time (s)

deterministic Chekov 1.12 1.22
p-Chekov 8.65 10.15

Overall
Collision Rate

deterministic Chekov 31.05% 42.54%
p-Chekov 11.82% 18.53%

Average Path
Length (rad)

deterministic Chekov 0.51 0.61
p-Chekov 0.71 0.85

P-Chekov
Performance

continuous chance constraint satis-
faction rate

86.80% 79.40%

continuous
satisfied
cases

average iteration number 3.49 4.41
average planning time (s) 6.39 7.96

average collision rate 0.11% 0.12%
average risk reduction 0.27 0.33

continuous
violated
cases

average iteration number 10.66 8.82
average planning time (s) 22.96 18.10

average collision rate 86.19% 85.35%
average risk reduction -0.28 -0.09

discrete chance constraint satisfac-
tion rate

94.20% 83.60%

discrete
satisfied
cases

average iteration number 4.13 4.59
average planning time (s) 8.29 8.58

average collision rate 0.10% 0.16%
average risk reduction 0.22 0.29

discrete
violated
cases

average iteration number 9.03 9.06
average planning time (s) 13.54 17.69

average collision rate 65.82% 79.65%
average risk reduction -0.19 -0.11

Improvement
from IRA (for

non-zero
number of

IRA iteration
cases)

Without
IRA

continuous satisfaction
rate

79.94% 72.31%

discrete satisfaction rate 91.22% 78.23%
average path length 0.88 0.96

With IRA

continuous satisfaction
rate

81.82% 71.24%

discrete satisfaction rate 93.42% 77.42%
average path length 0.86 0.97

with 500 feasible test cases, end-effector pose observa-
tion model, noise standard deviation 0.0044 and chance
constraint 10%, and Table 15 shows more detailed per-
formance. Note that the pre-processing here is conducted
with the learning-based collision estimator, which might
select slightly different test cases compared to using the
quadrature-based collision estimator because their estimated
risk for the same start and goal pose pair might not be exactly
the same. The comparison between Figure 8 and Figure 5
shows that the experiment results from quadrature-based p-
Chekov and learning-based p-Chekov have similar struc-
tures. Since the learning-based collision estimation compo-
nent is less conservative than the quadrature-based one, it
filters out fewer difficult test cases, which could explain
the relatively lower chance constraint satisfaction rate in
Figure 8. Comparing Table 15 with Table 10, we can see that
although the collision rate performance and the path length
performance of the two algorithms are similar, learning-
based p-Chekov’s planning time is significantly shorter,
especially in the more difficult “tabletop with a container”
environment where it reduced the average planning time by
67%. From the “improvement from IRA” section in table 15
we can see that IRA can slightly improve the planning phase
solutions in the “tabletop with a pole” environment, but

Prepared using sagej.cls

26 Journal Title XX(X)

it’s not able to make improvement in the more complicated
“tabletop with a container” environment.

8 Discussion
This paper presents a fast-reactive motion planning and
execution system that can be applied to high-dimensional
robotic operations in the presence of uncertainties and gen-
erate motion plans that satisfy user-specified chance con-
straints over collision risks. We first introduce deterministic
Chekov, an integrated probabilistic roadmap and trajectory
optimization framework that features fast online planning
for high-dimensional humanoid robots. We evaluate the
performance of deterministic Chekov together with five other
existing motion planning algorithms in four representative
manipulation scenarios, and experiment results show that
deterministic Chekov can find high-quality motion plans
with a much shorter planning time compared to other existing
planners.

We then describe two different versions of probabilistic
Chekov (p-Chekov): the quadrature-based version and the
learning-based version. P-Chekov uses deterministic Chekov
to generate nominal trajectories, propagates process noises
and observation noises along the nominal trajectory in order
to estimate the a priori probability distribution of robot
states, and decomposes the joint chance constraint into
allowed collision risk bounds at discrete waypoints. The
risk estimation component then predicts the collision risk
during execution based on the estimated state distributions,
and then compares them with the allocated risk bounds to
extract “conflicts” where the risk bounds are violated. These
conflicts are fed back to deterministic Chekov to guide it
to generated safer nominal trajectories. After resolving all
the conflicts, the solution trajectory is passed into execution
phase and an Iterative Risk Allocation (IRA) component will
improve the solution through reallocating risk bounds. The
only difference between the two versions of p-Chekov is
the risk estimation component. Quadrature-based p-Chekov
samples from the estimated state distribution according
to a quadrature rule during online planning and predicts
the collision risk through numerical integration, whereas
learning-based p-Chekov samples from the configuration
space offline to learn the risk distribution structure and
uses the pre-trained regression models to make online risk
predictions. Empirical results show that most test cases
whose chance constraints are violated by deterministic
Chekov’s solutions can satisfy their constraints through p-
Chekov planning phase’s solutions with only a small increase
in their trajectory lengths. Through the IRA component, a lot
of test cases are able to shorten their trajectory from planning
phase solutions. With the partially-observable end-effector
pose observation model, quadrature-based p-Chekov shows
a slow responding time during the online planning phase,
which restricts its application in time-sensitive planning
scenarios that require fast reaction. In contrast, in both
environments, learning-based Chekov takes only about 6-
8 s in the chance-constraint satisfied cases with end-effector
observation model, which is a relatively satisfying time for
many practical online chance-constrained planning tasks.

Although learning-based p-Chekov shows strong risk-
reduction ability and can effectively generate high-quality

trajectories that satisfy the chance constraints, it sometimes
still spent a long time to search for feasible plans in difficult
test cases, and the plans they eventually found often violate
the constraints. An interesting future work direction would
be to quickly and effectively identify these infeasible test
cases where the chance constraint can’t be satisfied even
though their start and goal poses are not highly risky. In
this way, p-Chekov won’t need to waste a long time trying
to search for feasible solutions for infeasible cases. Another
potential future work direction is to incorporate online
obstacle avoidance (Park et al. 2018; Orton et al. 2019; Li
and Shah 2019) into p-Chekov so that it can handle dynamic
obstacles in the execution environment. Additionally, real
robot experiments with raw sensor data are also necessary
before p-Chekov can be deployed in real-world applications.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,
Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,
Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz
R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga
R, Moore S, Murray D, Olah C, Schuster M, Shlens J,
Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V,
Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M,
Wicke M, Yu Y and Zheng X (2015) TensorFlow: Large-
scale machine learning on heterogeneous systems. URL
https://www.tensorflow.org/. Software available
from tensorflow.org.

Abramowitz M and Stegun IA (1964) Handbook of mathematical
functions: with formulas, graphs, and mathematical tables,
volume 55. Courier Corporation.

Alterovitz R, Siméon T and Goldberg KY (2007) The stochastic
motion roadmap: A sampling framework for planning with
markov motion uncertainty. In: Robotics: Science and systems,
volume 3. pp. 233–241.

Arslan O and Tsiotras P (2015) Machine learning guided
exploration for sampling-based motion planning algorithms.
In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, pp. 2646–2652.

Atramentov A and LaValle SM (2002) Efficient nearest neighbor
searching for motion planning. In: Proceedings 2002 IEEE
International Conference on Robotics and Automation (Cat.
No. 02CH37292), volume 1. IEEE, pp. 632–637.

Axelrod B, Kaelbling LP and Lozano-Pérez T (2018) Provably safe
robot navigation with obstacle uncertainty. The International
Journal of Robotics Research 37(13-14): 1760–1774.

Bellman RE (1957) Dynamic programming .
Bertsekas DP, Bertsekas DP, Bertsekas DP and Bertsekas DP (1995)

Dynamic programming and optimal control, volume 1. Athena
scientific Belmont, MA.

Blackmore L, Li H and Williams B (2006) A probabilistic approach
to optimal robust path planning with obstacles. In: American
Control Conference, 2006. IEEE, pp. 7–pp.

Blackmore L, Ono M, Bektassov A and Williams BC (2010)
A probabilistic particle-control approximation of chance-
constrained stochastic predictive control. IEEE transactions
on Robotics 26(3): 502–517.

Bohlin R and Kavraki LE (2000) Path planning using lazy prm. In:
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE

Prepared using sagej.cls

https://www.tensorflow.org/

Dai et al. 27

International Conference on, volume 1. IEEE, pp. 521–528.
Bry A and Roy N (2011) Rapidly-exploring random belief trees

for motion planning under uncertainty. In: Robotics and
Automation (ICRA), 2011 IEEE International Conference on.
IEEE, pp. 723–730.

Burlet J, Aycard O and Fraichard T (2004) Robust motion planning
using markov decision processes and quadtree decomposition.
In: Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, volume 3. IEEE, pp.
2820–2825.

Campana M, Lamiraux F and Laumond JP (2015) A simple path
optimization method for motion planning .

Chen C, Rickert M and Knoll A (2017) Motion planning under
perception and control uncertainties with space exploration
guided heuristic search. In: 2017 IEEE Intelligent Vehicles
Symposium (IV). IEEE, pp. 712–718.

Chollet F et al. (2015) Keras. https://keras.io.
Choset HM (2005) Principles of robot motion: theory, algorithms,

and implementation. MIT press.
Cohen BJ, Chitta S and Likhachev M (2010) Search-based planning

for manipulation with motion primitives. In: Robotics and
Automation (ICRA), 2010 IEEE International Conference on.
IEEE, pp. 2902–2908.

Dai S, Orton M, Schaffert S, Hofmann A and Williams BC
(2018) Improving trajectory optimization using a roadmap
framework. In: Proceedings of the 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).

Dai S, Schaffert S, Jasour A, Hofmann A and Williams BC (2019)
Chance constrained motion planning for high-dimensional
robots. In: Proceedings of the 2019 IEEE/RSJ International
Conference on Robotics and Automation (ICRA).

Eaton ML (1983) Multivariate statistics: a vector space approach.
JOHN WILEY & SONS, INC., 605 THIRD AVE., NEW YORK,
NY 10158, USA, 1983, 512 .

Gelb A (1974) Applied optimal estimation. MIT press.
Ha JS, Chae HJ and Choi HL (2018) Approximate inference-based

motion planning by learning and exploiting low-dimensional
latent variable models. IEEE Robotics and Automation Letters
3(4): 3892–3899.

Hildebrand FB (1987) Introduction to numerical analysis. Courier
Corporation.

Hoeffding W, Robbins H et al. (1948) The central limit theorem
for dependent random variables. Duke Mathematical Journal
15(3): 773–780.

Ichter B, Harrison J and Pavone M (2018) Learning sampling
distributions for robot motion planning. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE, pp. 7087–7094.

Janson L, Schmerling E and Pavone M (2018) Monte carlo motion
planning for robot trajectory optimization under uncertainty.
In: Robotics Research. Springer, pp. 343–361.

Kalakrishnan M, Chitta S, Theodorou E, Pastor P and Schaal S
(2011) Stomp: Stochastic trajectory optimization for motion
planning. In: Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, pp. 4569–4574.

Karaman S and Frazzoli E (2011) Sampling-based algorithms
for optimal motion planning. The International Journal of
Robotics Research 30(7): 846–894.

Kingma DP and Ba J (2014) Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 .

Koenig S and Likhachev M (2005) Fast replanning for navigation in
unknown terrain. IEEE Transactions on Robotics 21(3): 354–
363.

Kurniawati H, Hsu D and Lee WS (2008) Sarsop: Efficient point-
based pomdp planning by approximating optimally reachable
belief spaces. In: Robotics: Science and systems, volume 2008.
Zurich, Switzerland.

LaValle SM (1998) Rapidly-exploring random trees: A new tool for
path planning .

Lee A, Duan Y, Patil S, Schulman J, McCarthy Z, Van Den Berg
J, Goldberg K and Abbeel P (2013) Sigma hulls for gaussian
belief space planning for imprecise articulated robots amid
obstacles. In: 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, pp. 5660–5667.

Lenz D, Rickert M and Knoll A (2015) Heuristic search in belief
space for motion planning under uncertainties. In: 2015
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 2659–2665.

Li S and Shah JA (2019) Safe and efficient high dimensional motion
planning in space-time with time parameterized prediction. In:
Proceedings of the 2019 IEEE/RSJ International Conference
on Robotics and Automation (ICRA).

Liaw A, Wiener M et al. (2002) Classification and regression by
randomforest. R news 2(3): 18–22.

Liu W and Ang MH (2014) Incremental sampling-based algorithm
for risk-aware planning under motion uncertainty. In: Robotics
and Automation (ICRA), 2014 IEEE International Conference
on. IEEE, pp. 2051–2058.

Luders B, Kothari M and How J (2010) Chance constrained rrt for
probabilistic robustness to environmental uncertainty. In: AIAA
guidance, navigation, and control conference. p. 8160.

Luders BD, Karaman S and How JP (2013) Robust sampling-based
motion planning with asymptotic optimality guarantees. In:
AIAA Guidance, Navigation, and Control (GNC) Conference.
p. 5097.

Luenberger DG (1979) Introduction to dynamic systems: theory,
models, and applications, volume 1. Wiley New York.

Luna R, Şucan IA, Moll M and Kavraki LE (2013) Anytime
solution optimization for sampling-based motion planning. In:
Robotics and Automation (ICRA), 2013 IEEE International
Conference on. IEEE, pp. 5068–5074.

Luo Y, Bai H, Hsu D and Lee WS (2019) Importance sampling for
online planning under uncertainty. The International Journal
of Robotics Research 38(2-3): 162–181.

Mukadam M, Dong J, Yan X, Dellaert F and Boots B
(2018) Continuous-time gaussian process motion planning via
probabilistic inference. The International Journal of Robotics
Research 37(11): 1319–1340.

Murphy KP (2012) Machine learning: a probabilistic perspective.
MIT press.

Ono M and Williams B (2008a) An efficient motion planning
algorithm for stochastic dynamic systems with constraints on
probability of failure.

Ono M and Williams BC (2008b) Iterative risk allocation: A new
approach to robust model predictive control with a joint chance
constraint. In: Decision and Control, 2008. CDC 2008. 47th
IEEE Conference on. IEEE, pp. 3427–3432.

Prepared using sagej.cls

https://keras.io

28 Journal Title XX(X)

Ono M, Williams BC and Blackmore L (2013) Probabilistic
planning for continuous dynamic systems under bounded risk.
Journal of Artificial Intelligence Research 46: 511–577.

Orton M, Dai S, Schaffert S, Hofmann A and Williams BC
(2019) Improving incremental planning performance through
overlapping replanning and execution. In: Proceedings of
the 2019 IEEE/RSJ International Conference on Robotics and
Automation (ICRA).

Owen A (2014) Monte carlo theory, methods and examples (book
draft).

Pan J, Chitta S and Manocha D (2012) Fcl: A general purpose
library for collision and proximity queries. In: 2012 IEEE
International Conference on Robotics and Automation. IEEE,
pp. 3859–3866.

Pan J, Chitta S and Manocha D (2017) Probabilistic collision detec-
tion between noisy point clouds using robust classification. In:
Robotics Research. Springer, pp. 77–94.

Pan J and Manocha D (2016) Fast probabilistic collision checking
for sampling-based motion planning using locality-sensitive
hashing. The International Journal of Robotics Research
35(12): 1477–1496.

Park C, Pan J and Manocha D (2012) Itomp: Incremental
trajectory optimization for real-time replanning in dynamic
environments. In: ICAPS.

Park C, Park JS and Manocha D (2018) Fast and bounded prob-
abilistic collision detection for high-dof trajectory planning
in dynamic environments. IEEE Transactions on Automation
Science and Engineering 15(3): 980–991.

Park C, Rabe F, Sharma S, Scheurer C, Zimmermann UE
and Manocha D (2015) Parallel cartesian planning in
dynamic environments using constrained trajectory planning.
In: Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th
International Conference on. IEEE, pp. 983–990.

Patil S, Duan Y, Schulman J, Goldberg K and Abbeel P (2014)
Gaussian belief space planning with discontinuities in sensing
domains. In: 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, pp. 6483–6490.

Patil S, Kahn G, Laskey M, Schulman J, Goldberg K and
Abbeel P (2015) Scaling up gaussian belief space planning
through covariance-free trajectory optimization and automatic
differentiation. In: Algorithmic foundations of robotics XI.
Springer, pp. 515–533.

Patil S, Van Den Berg J and Alterovitz R (2012) Estimating
probability of collision for safe motion planning under gaussian
motion and sensing uncertainty. In: Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, pp.
3238–3244.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M and Duchesnay E (2011) Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12: 2825–
2830.

Pfeiffer M, Schaeuble M, Nieto J, Siegwart R and Cadena C (2017)
From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots. In: 2017
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 1527–1533.

Rasmussen C and Williams C (2006) Gaussian Processes for
Machine Learning. MIT Press.

RethinkRobotics (2012) Baxter. URL http://www.

rethinkrobotics.com/baxter/.
Schulman J, Duan Y, Ho J, Lee A, Awwal I, Bradlow H, Pan J,

Patil S, Goldberg K and Abbeel P (2014) Motion planning with
sequential convex optimization and convex collision checking.
The International Journal of Robotics Research 33(9): 1251–
1270.

Schulman J, Ho J, Lee AX, Awwal I, Bradlow H and Abbeel P
(2013) Finding locally optimal, collision-free trajectories with
sequential convex optimization. In: Robotics: science and
systems, volume 9. Citeseer, pp. 1–10.

Stentz A (1994) Optimal and efficient path planning for partially-
known environments. In: Robotics and Automation, 1994.
Proceedings., 1994 IEEE International Conference on. IEEE,
pp. 3310–3317.

Sun W, Patil S and Alterovitz R (2015) High-frequency replanning
under uncertainty using parallel sampling-based motion
planning. IEEE Transactions on Robotics 31(1): 104–116.

Sun W, Torres LG, Van Den Berg J and Alterovitz R (2016)
Safe motion planning for imprecise robotic manipulators by
minimizing probability of collision. In: Robotics Research.
Springer, pp. 685–701.

Thrun S, Burgard W and Fox D (2005) Probabilistic robotics. MIT
press.

Van Den Berg J, Abbeel P and Goldberg K (2011) Lqg-mp:
Optimized path planning for robots with motion uncertainty
and imperfect state information. The International Journal of
Robotics Research 30(7): 895–913.

Van Den Berg J, Patil S and Alterovitz R (2012) Motion planning
under uncertainty using iterative local optimization in belief
space. The International Journal of Robotics Research 31(11):
1263–1278.

Wang H, Chen J, Lau HY and Ren H (2016) Motion planning based
on learning from demonstration for multiple-segment flexible
soft robots actuated by electroactive polymers. IEEE Robotics
and Automation Letters 1(1): 391–398.

Xiao X, Dufek J and Murphy RR (2020) Robot risk-awareness
by formal risk reasoning and planning. IEEE Robotics and
Automation Letters 5(2): 2856–2863.

Zucker M, Ratliff N, Dragan AD, Pivtoraiko M, Klingensmith
M, Dellin CM, Bagnell JA and Srinivasa SS (2013) Chomp:
Covariant hamiltonian optimization for motion planning. The
International Journal of Robotics Research 32(9-10): 1164–
1193.

Prepared using sagej.cls

http://www.rethinkrobotics.com/baxter/
http://www.rethinkrobotics.com/baxter/

	1 Introduction
	2 Related work
	2.1 Fast-reactive motion planning
	2.2 Chance-constrained motion planning
	2.3 Collision risk estimation
	2.4 Machine learning in motion planning

	3 Problem statement
	3.1 Model definition
	3.2 Constraint definitions
	3.3 Problem definition

	4 Experiment setup
	5 Fast-reactive motion planning approach: deterministic Chekov
	5.1 Deterministic Chekov: the roadmap-based fast-reactive motion planner
	5.2 Limitation of existing motion planners
	5.3 Deterministic Chekov performance

	6 Chance-constrained motion planning approach – probabilistic Chekov
	6.1 Approach for estimating robot state probability distributions
	6.2 Collision probability estimation approach
	6.2.1 Quadrature-based collision probability estimation
	6.2.2 Learning-based collision probability estimation

	6.3 Risk allocation approach
	6.3.1 P-Chekov planning phase risk reallocation
	6.3.2 P-Chekov execution phase iterative risk allocation

	6.4 Detailed p-Chekov algorithm illustration

	7 Chance-constrained motion planning experiments
	7.1 Experiment modeling
	7.1.1 Joint configuration observation model
	7.1.2 End-effector pose observation model

	7.2 Quadrature-based p-Chekov experiment results
	7.2.1 Planning phase experiment results
	7.2.2 Improvement from iterative risk allocation

	7.3 Learning-based p-Chekov experiment results
	7.3.1 Comparison between different regression methods
	7.3.2 Neural network learning-based p-Chekov experiment results

	8 Discussion

