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Abstract— We present an evaluation of several representative
sampling-based and optimization-based motion planners, and
then introduce an integrated motion planning system which
incorporates recent advances in trajectory optimization into a
sparse roadmap framework. Through experiments in 4 common
application scenarios with 5000 test cases each, we show that
optimization-based or sampling-based planners alone are not
effective for realistic problems where fast planning times are
required. To the best of our knowledge, this is the first work
that presents such a systematic and comprehensive evaluation
of state-of-the-art motion planners, which are based on a
significant amount of experiments. We then combine different
stand-alone planners with trajectory optimization. The results
show that the combination of our sparse roadmap and tra-
jectory optimization provides superior performance over other
standard sampling-based planners’ combinations. By using a
multi-query roadmap instead of generating completely new
trajectories for each planning problem, our approach allows
for extensions such as persistent control policy information
associated with a trajectory across planning problems. Also, the
sub-optimality resulting from the sparsity of roadmap, as well
as the unexpected disturbances from the environment, can both
be overcome by the real-time trajectory optimization process.

I. INTRODUCTION

Robotic systems deployed in the real world have to
contend with a variety of challenges: light-weight arms or
those with series elastic actuators shake when they move,
wheels slip, IMUs drift, lidars do not reflect off glass doors,
structure light sensors fail outdoors, body-mounted cameras
get occluded by appendages, and humans in the environment
move quickly and in unpredictable manners. These systems
cannot spend an unbounded amount of time searching for
an optimal motion plan – a plan that will ultimately be
invalidated by the next sensor reading, a change in the
environment, or a slipping wheel. Instead, a motion planner
must find solutions rapidly even at the expense of optimality.
A motion planner that operates quickly allows the robot
to truly react to new information and to feel interactive to
humans. In addition to quick generation, these plans need to
account for the system’s dynamics, be robust to disturbances,
and operate faithfully within a higher-level task plan.

The problem of moving a robot safely and efficiently in
uncertain environments, however, is a challenging one. Often,
there is significant complexity with path planning alone,
due to the robot and environment geometry. Coupled with
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dynamic obstacles and sensor noises, the planning problem
only becomes more challenging. Additionally, accounting
for dynamics and actuation limits becomes untenable within
many frameworks.

Due to the complexity of the overall problem, current
motion planning and execution systems do not adequately
address all of these challenges simultaneously: they often
assume the environment is static, or at least, predictable;
many do not simultaneously support collision avoidance
and complex dynamics; and many generate completely new
trajectories for each planning problem instead of allowing
for persistent control policy information associated with a
trajectory across planning problems.

We have previously developed Chekhov, a reactive mo-
tion execution system that addresses these requirements [1].
Chekhov avoids obstacles, incorporates dynamic models and
control policies, and observes temporal constraints. However,
because Chekhov uses a roadmap approach [2], and because
robotic motion planning state spaces are typically very large,
Chekhov’s coverage of the operating workspace is very
sparse. As a result, trajectories produced by Chekhov are sub-
optimal. In this work, we address this limitation by leverag-
ing recent advances in obstacle-aware trajectory optimization
[3], [4]. First, we show that recently developed trajectory
optimization techniques, which include some capability to
avoid obstacles, are not, by themselves adequate for typical
problems. We then show that by formulating trajectory
optimization problems based on the Chekhov roadmap, the
problems associated with using trajectory optimization alone
are solved. Further, we show that the optimized trajectory
is superior to (more optimal than) the trajectory produced
by the roadmap alone. Thus, the combination results in
superior performance in terms of feasibility, optimality, and
also planning time. Our future goal is to integrate trajectory
optimization into the complete Chekhov motion execution
system, so it is essential that the trajectory optimization
approach is able to incorporate dynamics and temporal con-
straints, as well as being able to react quickly to disturbances
in planning tasks.

II. RELATED WORK

Optimization-based robotic motion planners are attracting
more and more attention with the increasing complexity
of robots and environments. Covariance Hamiltonian Opti-
mization for Motion Planning (CHOMP) [5], [6], Stochastic
Trajectory Optimization for Motion Planning (STOMP) [7],
Incremental Trajectory Optimization for Real-time Replan-
ning (ITOMP) [8] and TrajOpt [3], [4] are several state-of-
the-art optimization-based planners. In this work, we focus
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on the TrajOpt planner for three reasons. First, the convex-
convex collision checking method used in TrajOpt can take
accurate object geometry into consideration, shaping the
objective to enhance the ability of getting trajectories out
of collision. In contrast, the distance field method used in
CHOMP and STOMP consider the collision cost for each
exterior point on a robot, which means two points might drive
the objective in opposite direction. Second, the sequential
quadratic programming method used in TrajOpt can better
handle deeply infeasible initial trajectories than the com-
monly used gradient descent method [3]. Third, customized
differential constraints, for example velocity constraints and
torque constraints, can be incorporated in TrajOpt. This is an
important consideration for Chekhov which aims at building
a motion execution system that incorporates system dynam-
ics models and control policies, while respecting additional
temporal constraints.

Despite the advantages of optimization-based planners,
they are not stand-alone planners and their performance is
very sensitive to the quality of initializations. Also, numerical
trajectory optimization often suffers from the problem of
getting stuck in high-cost local optima. Therefore, a nat-
ural thought to improve the performance of optimization-
based planners is to combine them with global planners.
Some existing work, for example [9], [10], has proposed
online path shortening methods for sampling-based planners.
The effect of optimization in those approaches is mostly
limited to trajectory smoothing and shortening, and can’t
account for real-time obstacle avoidance and dynamics con-
straints. Therefore, those modified sampling-based planners
still share the typical slow planning times with other com-
mon sampling-based planners. Other researches [11] have
presented a combined roadmap and trajectory optimization
planning algorithm. However, they additionally focused on
avoiding singularities in redundant manipulators and meeting
Cartesian constraints resulting in relatively long planning
times. In comparison, our approach aims at fast reactive real-
time planning in practical planning scenarios, and extensive
experiment results in Section V show that our approach
reaches this goal. Experience-based planning [12], [13],
[14] is another class of methods that combines offline pre-
computation together with online querying and repairing
in order to speed up robot motion planning. One of the
main differences between our approach and experience-based
approaches is that our roadmap is not case-specific and
covers the general configuration space. Another difference
is that our collision-aware online repairing phase not only
smooths the trajectory but also incorporates many other
constraints such as robot dynamics constraints. However,
learning from previous planning experiences and wisely
placing the roadmap nodes could be an interesting extension
to our current work.

III. PROBLEM STATEMENT AND APPROACH

The problem solved by Chekhov is to quickly plan and ex-
ecute robot motions that accomplish a task specified by a set
of temporal and spatial constraints. The inputs to Chekhov

can change quickly and unexpectedly with time while the
motion is being executed. For practical applications, changes
fall into three categories: 1) the current state of the robot
changes; 2) the goals to be achieved change; and 3) an
environment obstacle moves in a way that affects the robot.
Thus, we define a disturbance as such an unexpected change
to task goals, environment, or robot state. The system we
aim at achieving should react, effectively, instantaneously to
disturbances; it should act as if it always, “instantly” knows
what to do, for any combination of goals and circumstances.
This fast reaction is key to providing robots the capability to
operate effectively in unstructured, uncertain, fast-changing
environments.

We make two key assumptions in our approach. Although
these assumptions may seem restrictive, we believe that
they are consistent with a large class of practical robotic
manipulation problems. First, we assume that a manipulation
planning query is from a initial pose to a pre-grasp pose
instead of a grasping pose. We assume the pre-grasp to
grasp motion is short, and is best handled by visual and
force servoing loops, rather than open-loop planners. That
is to say, the motion planner presented in this paper only
deals with large arm motions, rather than also considering
the grasping motions. Second, we assume that the collision
environments are not overly complex. We are not trying to
solve “piano mover” problems like reaching into tunnels or
through a maze of obstacles. Instead, we assume that there
is a small set of potential obstacles, such as a workpiece, a
table, another robot, or a human, but that some of these may
move. The emphasis here is on achieving fast performance
in typical, practical situations.

We endeavor to achieve a fast, reactive capability by
using a roadmap-based approach. The roadmap represents
the static collision-free space, and therefore, is re-used across
planning instances. For each pair of nodes in the roadmap,
k shortest paths (k ≥ 1) are calculated and stored, so that
when dynamic obstacles invalidate some of the edges in the
roadmap, the probability of finding a collision-free path for
the planning task can be enhanced as we increase k. Our
approach features three key innovations from the previous
Chekhov. First, as stated in Section I, we extend the roadmap
approach used previously in Chekhov by incorporating recent
advances in obstacle-aware trajectory optimization [3], [4] in
order to improve optimality and fast reaction to disturbances.
Our goal here is to consider the entire solution space, rather
than the very sparse one provided by the roadmap. Second,
we use a set of practically relevant test environments, rather
than random ones, or ones that are artificially challenging.
To this end, we have developed three new environments that
represent typical scenarios. We have also included a fourth
environment developed previously in the motion planning
community. Third, we use semantic information about the
environment to help guide the construction of the roadmap to
favor inclusion of poses that are known to be useful. Utilizing
semantic information includes making a basic distinction be-
tween static and dynamic obstacles. It also includes utilizing
knowledge of objects in the environment in order to generate
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pre-grasp poses that will be useful for manipulating them.

IV. IMPLEMENTATION

In order to test and compare the performance of different
path planners, we use four representational environments:
a “tabletop with a pole”, a “tabletop with a container”, a
“kitchen” and a “shelf with boxes” environment. We choose
environments that are representative of different application
domains rather than using an environment with randomly-
placed obstacles because our goal is to develop a path
planner that operates quickly and provides short paths for
real world applications. The kitchen environment comes from
the TrajOpt package, whereas, we designed the remaining
three. The “tabletop with a pole” environment, shown in
Fig. 1, is a simple tabletop pick-and-place task environment,
with a slender pole in the middle of the table and a box on
each side of the pole. All the planners can easily handle
most planning queries in this environment. The “tabletop
with a container” environment is similar, but has a large
container on the table with both boxes inside and outside
of it. The “kitchen” environment models a typical kitchen
scenario which is common in household domains. The “shelf
with boxes” environment, shown in Fig. 2, is a 7-level shelf
environment with boxes on each level of the shelf, which
is a common scenario in the logistic application domain.
This scenario is known to be hard because of the relatively
large total number of obstacles and the narrow space between
them.

For each environment, we generate 5000 feasible planning
tests by randomly sampling 5000 start and target end-effector
pose pairs that are collision-free and kinematically feasible.
For each sampled point, both the joint-space position and the
end-effector location and orientation are recorded. For each
experiment trial, planners are provided with the starting joint-
space position and the goal end-effector pose. We specify the
goal in workspace to give planners the opportunity to find
different joint-space solutions to the planning problem. We
have ensured that all test cases have a solution by executing
all the planners on each test case, and re-sampling start and
goal points when no planners could find a solution. All the
test cases, including the environment and poses, are saved
so that they can easily be repeated in the future.

In our experiments, we use the Baxter robot [15] with its
7-DOF left arm as the manipulator. Based on our initial tests,
TrajOpt works quite similarly on other manipulators, so here
we take the left arm as an example to implement the in-depth
analysis.

In addition to the discrete-time collision costs approach,
the TrajOpt algorithm also provides a “swept-out volume”
method in order to ensure continuous-time collision check-
ing [3]. However, during our experiments, we find that
even when the continuous-time collision cost is utilized,
collision can still occur in-between waypoints, and it is
not obvious how to use TrajOpt’s reported collision cost
to detect collisions consistently since large cost values can
indicate either a collision or just a waypoint close to an
obstacle. Hence, rather than simply referring to cost values

Fig. 1. The “tabletop with a pole” environment

Fig. 2. The “shelf with boxes” environment

returned by TrajOpt, in our experiments we also implement
an independent collision checking process for the returned
trajectory to test continuous-time safety. In particular, we
interpolate 100 intermediate waypoints between each pair of
adjacent waypoints and collision check each point using the
OpenRAVE collision checking. For our work, we consider
this fine-grained discrete-time collision check to approximate
a continuous-time collision check sufficiently well.

As introduced previously, we can use semantic information
about the environment to improve roadmap construction and
thus, the motion planning result. Semantic Object Maps
(SOM) [16] provide a representation of such information,
including an overall ontology, and also part composition
and articulation. This can be used, for example, to represent
how a refrigerator door, or a desk drawer opens and closes,
which can be used to generate precise pre-grasp poses
for the open and closed positions. This is important as
it guarantees that required poses will exist directly in the
roadmap. Additionally, semantic information can be used to
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bias sampling of poses during roadmap construction to favor
areas of interest. For example, the area above a desktop is
more likely to contain objects of interest and hence should
get more nodes than the (free) area under the desktop.

Although our tube-based roadmap architecture supports
dynamics and temporal constraints [17], our experiments
here mainly focus on kinematic planning tasks for robot ma-
nipulation considering obstacle avoidance. We have already
incorporated customized constraints into TrajOpt which re-
spect system dynamics such as torque constraints, velocity
limits and acceleration limits. Experiments on planning tasks
with dynamics and temporal constraints are beyond the focus
of this paper but will be further explored in our future
research. Furthermore, for the purposes of evaluating key as-
pects of our approach, we have assumed that all obstacles in
the test environments are static. We focus here on static rather
than dynamic obstacles because static obstacles occupy the
majority of the workspace in many practical applications. As
stated in Section III, we handle dynamic obstacles through
storing redundant roadmap paths and by coupling these paths
with fast optimization from TrajOpt. Therefore, experiments
with dynamic obstacles can be straightforwardly extended
from our current experiments.

V. EXPERIMENTS AND RESULTS

In Section V-A, we provide experiment results and per-
formance evaluation of five standard path planners (Open-
RAVE BasicRRT, OMPL LazyPRM [18], OMPL PRM*
[19], OMPL RRT* [19], and TrajOpt with a straight-line
joint-space initialization).In Section V-B, we show the results
and evaluation of four combined planners which pass in
a sampling-based planner solution as an initial path (or
“seed path”) to TrajOpt. Their performance is analyzed
and compared in terms of failure-rate, average joint-space
path length and average algorithm runtime. Additionally,
we also implemented our own roadmap planner which can
provide seed paths to TrajOpt – the results and evaluation of
which is described in Section V-C. Each of the experiments
includes 5000 test queries and is conducted in all the four
environments mentioned in Section IV, but for brevity, most
of the tables only provide the results summary for the
“tabletop with a pole” environment and the “shelf with
boxes” environment, which qualitatively represent the easiest
and hardest environments for the planners, respectively.

A. Limitation of current planners

Currently, popular path planners include sampling-based
path planners, which can operate stand-alone, and trajectory-
optimization type path planners, which modify a seed trajec-
tory and return the optimized solution. However, in practical
application scenarios, each of those planners has their own
disadvantages. The sampling-based path planners are usually
not fast enough for real-time planning tasks, and some of
them (like PRM and PRM*) can not incorporate dynamic
constraints. Meanwhile, trajectory-optimization type plan-
ners locally optimize a path, thus their performance depends
much on the quality of seed trajectories. When provided with

a bad seed, trajectory-optimization type planners can have
high collision-rates or get stuck in local optima. This section
provides a systematic empirical study on some sampling-
based planners and a trajectory-optimization type planner,
TrajOpt [3], comparing their performance in terms of failure-
rate, average joint-space path length, and average algorithm
runtime.

We compared five off-the-shelf planners (OpenRAVE Ba-
sicRRT, OMPL LazyPRM, OMPL PRM*, OMPL RRT* and
TrajOpt with straight-line joint-space initialization) on all
5000 cases for each environment. For the sampling-based
planners, we set the runtime upper bound for generating
a plan to 300s. The runtime upper bound was choosen,
after initial testing, to reduce the failure rates of the optimal
sample-based planners (RRT* and PRM*). For example, if
we set the RRT* runtime bound to 60s, the failure rate for
the “shelf with boxes” environment will be as high as 70%.

TrajOpt works by formulating the kinematic motion plan-
ning problem as a non-convex optimization problem over a
T ×K-dimensional vector, where T is the number of time-
steps and K is the number of degrees of freedom [3]. Hence
every trajectory in TrajOpt is made up of T waypoints, where
the number T is set by the user. We ran 16 sets of tests, each
with an increasing total number of waypoints, and observed
that TrajOpt runtime increased approximately linearly with
number of waypoints while the collision rate dropped quickly
with more waypoints. For our tests on TrajOpt with straight-
line seed trajectories, we found that setting T = 30 provided
a good balance between low collision rates and algorithm
runtimes. Henceforth, in this subsection, we use 30 total
waypoints (including the start and target waypoints).

Table I summarizes the experiment results in the easiest
environment, “tabletop with a pole”, and the hardest environ-
ment, “shelf with boxes”, in terms of failure rate, average
runtime and average joint-space path length. The reported
failure rate encompasses all possible failure modality (i.e.,
not finding a solution or returning a solution in collision).
Since TrajOpt will always return a “solution” even if the
optimization fails, we log a failure when our (secondary)
collision checker determines the solution to be in collision;
for sampling-based planners, failure rate is represented by
the percentage of cases where the planner failed to return a
solution.

If we compare the failure rate of different planners in
Table I, we can see that, both in the relatively easy “tabletop
with a pole” environment and in the relative hard “shelf
with boxes” environment, TrajOpt fails more frequently to
find collision-free solutions than any other planners. If we
compare the four sampling-based planners, it can be observed
that all the four planners find collision-free solutions for most
of the cases in the simple “tabletop with a pole” environment.
In contrast, in the complicated “shelf with boxes” environ-
ment, RRT and LazyPRM show relatively better solution-
finding performance, whereas the optimal planners RRT*
and PRM*, even though provided 300s runtime, still fail
frequently. From the “average runtime” column in Table I,
it can be observed that the sampling-based planners require
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TABLE I
EVALUATION OF CURRENT SAMPLING-BASED AND TRAJECTORY

OPTIMIZATION PLANNERS

Environments Planners1 Failure Rate2 Average
Runtime (s)3

Average
Path Length

(rad)

Tabletop
with a Pole

RRT 2.30% 17.88 0.77
LazyPRM 0.22% 7.32 1.76

RRT* 5.32% 300.19 0.63
PRM* 1.00% 300.71 0.79

TrajOpt 17.38% 0.56 0.71

Shelf with
Boxes

RRT 10.00% 63.86 1.06
LazyPRM 16.94% 63.85 2.08

RRT* 26.78% 300.37 0.93
PRM* 24.34% 300.79 1.16

TrajOpt 32.06% 1.59 1.51
1 For each planner in each environment, 5000 planning tasks are tested

and the data shown in this table are averaged from the 5000 results.
2 For TrajOpt with a straight-line seed, failure rate is the percentage of

cases where the solution is in collision; for sampling-based planners,
failure rate is the percentage of cases where the sampling-based planner
failed to find solution.

3 The runtime upper-bound is set to 300s. RRT* and PRM* always use
the full amount of time – the small deviation from 300s shown in the
table is due to small timing errors during simulation.

too much time for most practical path planning applications.
In the case of the optimal planners (RRT* and PRM*),
they take all the given time to approximate the optimal
solution, therefore their average runtime is always around
300s. Even for LazyPRM, 7.32s in the simple environment
and 63.85 in the complicated environment is infeasible for
real-time reaction to disturbances in planning tasks. In terms
of average path length, optimal planners have noticeable
advantages in finding shorter solutions, especially in harder
environments. Among the remaining planners, LazyPRM
tends to return longer solutions, which is reasonable due to
the intrinsic mechanism of lazy searching algorithms. Tra-
jOpt performance in path length is comparable to sampling-
based planners, especially in relatively easy environments.

In conclusion, although sampling-based planners are good
at avoiding collision, they often take too long for practical
application to find a solution. In contrast, TrajOpt shows
good performance in terms of runtime, but the high collision-
rate makes it an unsatisfactory practical planner.

B. TrajOpt performance with a collision-free seed

The way TrajOpt works indicates its sensitivity and de-
pendency on the initialization condition [3]. Therefore, we
propose that the performance of TrajOpt can be dramatically
improved if we pass in a collision-free trajectory as a seed in-
stead of using the joint-space straight-line seed. Based on the
sampling-based planner experiment results from Section V-
A, we conduct systematic tests on TrajOpt’s performance
when provided with a sampling-based planner solution as a
seed trajectory. For the cases where a sampling-based planner
found a solution, we pass in the solution as the seed trajectory
to TrajOpt and record the TrajOpt runtime, solution path
length, and collision rate.

TrajOpt algorithm requires the number of waypoints in the
solution trajectory to be the same as in the seed. Therefore, if

we pass in seeds directly from sampling-based planners with-
out any pre-processing, the number of waypoints in different
cases will fluctuate drastically. As mentioned in Section V-
A, TrajOpt runtime increases approximately linearly as the
number of waypoints increases, which means the variation of
waypoint numbers will influence runtime. Additionally, seeds
taken directly from the sampling-based planners with a fewer
number of waypoints will results in higher collision rates
after processing by TrajOpt than those with more waypoints.
This is because such cases usually have longer edges in-
between waypoints and are more likely to have seed paths
that are very close to obstacles. Our tests show that TrajOpt
has a much weaker ability to deal with edge collisions than
with waypoint collisions, and it is likely to push path edges
into obstacles when shortening and smoothing the trajectory.
Hence, before passing the seed paths into TrajOpt, we sample
them by setting a upper bound of 0.16 rad for the distance be-
tween adjacent waypoints. This pre-processing dramatically
reduced the collision rate of TrajOpt solutions, as well as
narrowing down the variance of TrajOpt’s runtime among
different cases. Inevitably, the average TrajOpt runtime is
increased because of more waypoints after sampling the seed,
but it is still generally under 1s, which is acceptable for real-
time planning tasks.

The performance of this combined “seed + TrajOpt”
planner is shown in Table II. Comparing the TrajOpt runtime
column in Table II and the straight-line seed TrajOpt runtime
in Table I, we see that when provided with a good seed,
the TrajOpt runtime generally decreased. Specializing to the
cases where TrajOpt with a straight-line seed failed to push
the trajectory out of collision, we found a 50% - 70% runtime
drop after provided with sampling-based planners’ solutions
as initializations. Although a small percentage of cases end
up in collision when TrajOpt is smoothing and optimizing
the seeds, if we compare the “average path length” column
in Table I and Table II, an obvious improvement in average
joint-space path length is observed. After comprehensively
comparing TrajOpt’s performance with a sampling-based
planner seed and with a straight-line seed, we see that
TrajOpt’s performance improves tremendously in terms of
both success rate and optimization time when provided with
a collision-free seed. However, according to the “average
runtime” for combined planners shown in Table II, it is not
feasible to use sampling-based planners as seed planners for
practical path planning tasks. Thus, the challenge becomes
how to generate a good enough seed quickly.

C. TrajOpt with Standard Sampling-based Planner Seed and
Roadmap Seed

The core of the roadmap framework for Chekhov is a
simplified PRM variant combined with a cache of all-pair-
shortest-paths (APSP) solutions. The roadmaps are con-
structed by randomly sampling points in joint space until a
pre-defined number of collision-free points have been sam-
pled. The sampling is uniform over the four most proximal
joints of the robot, and fixed values are assigned to the
remaining joints for all nodes. This approach is taken to
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TABLE II
PERFORMANCE OF THE COMBINED “SAMPLING-BASED SEED +

TRAJOPT” PLANNER

Environments Seed
Planners

Average
TrajOpt
Runtime

(s)

Seed + TrajOpt Planner

Average
Runtime

(s)1

Average
Path

Length
(rad)

Collision
Rate2

Tabletop
with a Pole

RRT 0.63 18.51 0.70 1.29%
LazyPRM 0.98 8.30 1.28 0.12%

RRT* 0.29 300.48 0.54 0.02%
PRM* 0.36 301.07 0.64 0.10%

Shelf with
Boxes

RRT 0.92 64.78 0.98 4.20%
LazyPRM 1.36 65.21 1.60 1.57%

RRT* 0.46 300.83 0.81 1.17%
PRM* 0.67 301.46 0.95 1.98%

1 Sum of sampling-based seed planner runtime (as shown in Table I
column 4) and TrajOpt runtime averaged from 5000 test cases.

2 Continuous-time collision rate.

more completely cover the workspace with random samples
in joint space. For the tests in Table III and Table IV, the
roadmaps start out with 1000 collision-free nodes. Then,
each node is connected to the k nearest neighbors for which
collision-free edges exist. For the tests below, k = 10 is
used. The resulting graph is pruned of any nodes and edges
disconnected from the largest subgraph. For the environments
tested, no more than five of the 1000 points were discon-
nected from the main subgraph. Then an APSP solution set
is constructed for the pruned roadmap and stored for rapid
shortest path queries.

Table III shows the performance of the roadmap plan-
ner for all four tested environments. The remaining two
environments omitted in Table I and Table II are also
included to emphasize the difficulty of the “shelf with boxes”
environment relative to realistic environments. It makes sense
that it is difficult to establish collision-free straight-line con-
nections to randomly sampled points in the roadmap when
the environment contains narrow shelves with objects inside
them. That being said, tests were conducted to observe the
failure rates of roadmaps in different environments relative
to the number of randomly sampled points in the roadmap.
As the number of randomly sampled points increased, we
observed significant improvement in how often the roadmap
was connected to in all environments, particularly in the
“shelf with boxes” environment. This leads us to believe that
it will not be difficult to develop more intelligent sampling
methods that allow roadmaps to more effectively cover all
areas of interest within an environment.

If we compare the results in Table III to those in Table I,
we can see that, in terms of failure rate, our roadmap planner
performs comparably or better than all tested sampling-based
planners. In the most difficult environment, only RRT was
able to produce a solution more often than our roadmap
planner. In addtion to failure rate, our roadmap planner’s
average runtime is substantially better than the sampling-
based planners’ in all cases. It is faster by more than an
order of magnitude in most observed cases. This is a result of
caching the APSP solution set for fast queries. Additionally,

TABLE III
ROADMAP PERFORMANCE IN ALL ENVIRONMENTS

Environments1 Failure
Rate2

Average
Runtime

(s)

Average
Path Length

(rad)

Best
Average3

(rad)
Tabletop with

a Pole 0.18% 0.14 1.24 0.63

Tabletop with
a Container 0.76% 0.18 1.32 0.80

Kitchen 1.92% 0.38 1.29 0.71
Shelf with

Boxes 12.06% 0.39 1.30 0.93

1 In each environment, roadmap performance is tested on 5000 planning
tasks and the data shown in this table are averaged from the 5000 results.

2 For these roadmaps, failure occurs when no collision-free straight-line
connection was found to an existing point on the roadmap from the
start or goal pose of a test case.

3 Best average is the shortest average path length between all tested
sampling-based planners in that environment. Shown here to provide
context for the roadmap performance.

it should be noted that the roadmap planner constructs the
roadmap for each environment a priori whereas LazyPRM
constructs a new roadmap online for each case in our tests.
For path length, the roadmap planner performs worse than
the optimal planners and RRT, but better than LazyPRM.
In general with roadmap based planners, the sparsity of
the roadmap restricts ability to obtain short paths. With
only 1000 nodes, we consider the roadmaps we are using
to be relatively sparse for the workspace. That being said,
the roadmap planner generates direct, collision-free paths
compared to the off the shelf sampling-based planners. Since
these paths are just seeds for TrajOpt and their lengths
are well within an order of magnitude of one another, the
discrepancies in path length are not a concern for us.

Table IV shows a comparison of solutions produced by
TrajOpt when traditional sampling-based planners are used
versus our roadmap planner. Many of the observations that
can be made from this table reinforce observations made
from comparing Table III to Table I. Something new to
note is that when the roadmap planner produces a solu-
tion, TrajOpt in turn produces a collision-free trajectory
more than 98% of the time. Additionally, these optimized
trajectories are on average more than 10% shorter than
their corresponding seed trajectories. Figure 3 shows the
four proximal joints for three different trajectories to help
visualize the improvments TrajOpt is making on the seed
trajectories. The solid lines are the roadmap seeds and the
dashed lines are the outputted trajectories by TrajOpt when
provided those seeds. From Figure 3 we can see that TrajOpt
fulfilled the task of smoothing and shortening the sub-optimal
trajectories produced by the Chekhov roadmap. This result
is significant because, as a start, it proves that TrajOpt can
effectively optimize the roadmap solutions for kinematic
planning problems. Therefore, when we fully incorporate all
the dynamics and temporal constraints with TrajOpt, we are
optimistic that TrajOpt can also fulfill the task of optimizing
trajectories for the whole Chekhov motion and execution
framework.

The difference in average runtime of the different seed
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Fig. 3. Roadmap seed trajectories shown with corresponding trajectories optimized by TrajOpt to illustrate improvement on the seed. The solid lines are
the roadmap seeds and the dashed lines are the outputted trajectories by TrajOpt when provided those seeds.

planner coupled with TrajOpt is most notable for highlighting
the performance improvements provided by our roadmap
planner, but runtime as a metric does not reveal the whole
picture for many of these planners. As noted earlier, the
optimal planners like RRT* will always use the full allotted
time but may have a good non-optimal solution far sooner
than that. Also, in our test cases, LazyPRM constructs
its roadmap online for one time use and then searches
for a path in that roadmap. In general, a PRM does not
lend itself to single-query problems. Our roadmap planner
precomputes the roadmap and APSP solutions, but is also
essentially a PRM. It would be interesting to compare the
performance of our roadmap planner to faster RRT variants,
but it is clear to us that the speed provided by querying
precomputed solutions from a PRM of some form outweighs
any optimization to be had in online search, especially as
system dynamics are factored in.

Overall, our roadmap planner performs as well as if
not better than the off the shelf sampling based planners
we tested. The performance metrics used are failure rate,
average runtime, and average path length. Since one of our

main goals is to develop a reactive motion execution system
that can “instantly” replan when disturbances occur, average
runtime is where we are most concerned with improvement.
Fortunately, average runtime is where we saw the greatest
improvement when using our roadmap planner to provide
seed solutions rather than using other traditional sampling-
based planners. Although we are currently not using dynamic
obstacles in our experiments, our average online planning
time leaves us optimistic that our planner will be able to
handle disturbances in planning tasks with fast reaction.

VI. DISCUSSION

Our results show the benefit of extending the Chekhov
roadmap approach with the TrajOpt algorithm. The speed of
both approaches is preserved, and meanwhile the combina-
tion produces more optimal solutions than the roadmap ap-
proach alone and with less failure than the TrajOpt approach
alone. The average runtime of under 1 sec and the success
rate of above 98% in practical application scenarios show that
our approach can handle practical planning tasks with fast
reaction. We are currently distinguishing static from dynamic
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TABLE IV
TRAJOPT SEEDED WITH SAMPLING-BASED PLANNER SOLUTION

COMPARED TO ROADMAP SOLUTION

Environ-
ments

Seed
Planners

Average
TrajOpt
Runtime

(s)

Average
Seed

Length
(rad)

Seed + TrajOpt Planner
Average

Run-
time
(s)1

Average
Path

Length
(rad)

Collision
Rate2

Tabletop
with a
Pole

RRT 0.63 0.77 18.51 0.70 1.29%
LazyPRM 0.98 1.76 8.30 1.28 0.12%

RRT* 0.29 0.63 300.48 0.54 0.02%
Roadmap 0.45 1.24 0.59 0.82 0.06%

Shelf
with

Boxes

RRT 0.92 1.06 64.87 0.98 4.20%
LazyPRM 1.36 2.08 65.21 1.60 1.57%

RRT* 0.46 0.93 300.83 0.81 1.17%
Roadmap 0.61 1.30 1.00 1.02 1.98%

1 Sum of seed planner runtime and TrajOpt runtime averaged from 5000
test cases.

2 Continuous-time collision rate.

obstacles to the extent that the roadmap is constructed to
not collide with the static obstacles in the environment, but
dynamic obstacles introduced at runtime will likley obstruct
nodes and edges in the roadmap. Accounting for these
obstructions is an active area of research in our group. We
would also like to improve the our ability to connect to
our roadmaps in difficult environments, but since there are
already techniques that have been shown to improve roadmap
coverage with sparse sampling [20], we are not currently
researching new approaches to the problem.

Another active area of research in our group concerns
the interaction of dynamics and temporal constraints in inte-
grated motion and task planning problems. We have previ-
ously utilized Chekhov’s roadmap framework to incorporate
dynamics and temporal constraint information [1], [17], and
we plan to extend this work using recent advances in control
theory such as Sum of Squares [21] programming. This
is important for challenging underactuated applications like
underwater mobile manipulators operating in the proximity
of reefs, and walking robots.
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