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Abstract—In order to provide adaptive and user-friendly solu-
tions to robotic manipulation, it is important that the agent can
learn to accomplish tasks even if they are only provided with very
sparse instruction signals. To address the issues reinforcement
learning algorithms face when task rewards are sparse, this paper
proposes an intrinsic motivation approach that can be easily
integrated into any standard reinforcement learning algorithm
and can allow robotic manipulators to learn useful manipulation
skills with only sparse extrinsic rewards. Through integrating
and balancing empowerment and curiosity, this approach shows
superior performance compared to other state-of-the-art intrinsic
exploration approaches during extensive empirical testing. Qual-
itative analysis also shows that when combined with diversity-
driven intrinsic motivations, this approach can help manipulators
learn a set of diverse skills which could potentially be applied to
other more complicated manipulation tasks and accelerate their
learning process.

I. INTRODUCTION

Real-world robotic manipulation tasks are diverse yet often
complicated. An ideal robotic agent should be able to adapt
to new environments and learn new tasks by exploring on
its own, instead of requiring intensive human supervision.
The traditional task and motion planning approach to robotic
manipulation [18] typically requires a significant amount of
domain-specific prior knowledge, and acquiring this knowl-
edge often involves intensive human engineering. On the other
hand, reinforcement learning (RL) agents have demonstrated
impressive performances in scenarios with well-structured en-
vironment and dense reward signals [22]. However, learning-
based approaches to manipulation typically only work well
when the reward function is dense or when expert demonstra-
tions are available. This is because when the state and action
space is high-dimensional and the reward signal is sparse, RL
agents could potentially spend a long time exploring the state
space without getting any reward signal. Therefore, RL has
seen less success in tasks with unstructured environments like
robotic manipulation where the dynamics and task rewards are
less intuitive to model.

Designing task-specific dense reward functions to simplify
the sparse-reward RL problem has been a common solution
for manipulation problems, but in most practical applications,
hand designing dense reward functions for every robot in every
task and every environment is infeasible and might bias the
agent’s behavior in a suboptimal way [1]. Inverse reinforce-
ment learning approaches seek to automate reward definition
by learning a reward function from expert demonstrations, but

inevitably demand a significant amount of task-specific knowl-
edge and place considerable expert data collection burden on
the user [30]. Recent advances in meta-learning allow agents
to transfer learned skills to other similar tasks [12, 6], but a
large amount of prior meta-training data across a diverse set
of tasks is required, which also becomes a burden if a lot of
human intervention is needed. Therefore, effectively solving
sparse reward problems from scratch is an important capability
that will allow RL agents to be applied in practical robotic
manipulation tasks.

In this paper, we propose an empowerment-based intrinsic
exploration approach that allows robots to learn manipulation
skills with only sparse extrinsic rewards from the environment.
Empowerment is an information-theoretic concept proposed
in an attempt to find local and universal utility functions
which help individuals survive in evolution by smoothening
the fitness landscape [21]. Through measuring the mutual de-
pendence between actions and states, empowerment indicates
how confident the agent is about the effect of its actions in the
environment. In contrast to novelty-driven intrinsic motivations
which encourage the agent to explore actions with unknown
effects, empowerment emphasizes the agent’s “controllability”
over the environment and favors actions with predictable
consequences. We hypothesize that empowerment is a more
suitable form of intrinsic motivation for robotic manipulation
tasks where the desired interactions with environment objects
are typically predictable and principled. Imagine a robot
interacting with a box on the table. Intuitively, the undesirable
behaviors of knocking the box onto the floor should generate
higher novelty since it helps explore more states that haven’t
been visited, and the desirable behaviors of pushing the box
or lifting the box up should generate higher empowerment
because the effects of these actions are more predictable.

Based on this intuition, we apply an empowerment-based
intrinsic motivation to manipulation tasks with sparse extrinsic
rewards and demonstrate that with the help of novelty-driven
rewards at the beginning of training, neural function approx-
imators can provide reasonable estimations of empowerment
values. With extensive empirical testing on object-lifting and
pick-and-place tasks in simulation environments, we show that
this empowerment-based approach outperforms other state-of-
the-art intrinsic exploration methods when the extrinsic task
rewards are sparse. Although the concept of empowerment
has previously been discussed in the context of RL [24], to
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the author’s best knowledge, this paper is the first successful
demonstration of the effectiveness of empowerment in terms
of assisting RL agents in learning complicated robotics tasks
with sparse rewards.

II. RELATED WORK

Reinforcement learning for sparse reward tasks has been
been extensively studied from many different perspectives.
Curriculum learning [4] is a continuation method that starts
training with easier tasks and gradually increases task diffi-
culty in order to accelerate the learning progress. However,
many curriculum-based methods only involve a small and
discrete set of manually generated task sequences as the
curriculum, and the automated curriculum generating meth-
ods often assume known goal states or prior knowledge on
how to manipulate the environment [13, 36] and bias the
exploration to a small subset of the tasks [34]. Through
implicitly designing a form of curriculum to first achieve
easily attainable goals and then progress towards more difficult
goals, Hindsight Experience Replay (HER) is the first work
that allows complicated manipulation behaviors to be learned
from scratch with only binary rewards [1]. However, when the
actual task goal is very distinct from what random policies can
achieve, HER’s effect is limited. As mentioned in [1], HER
is unable to allow manipulators to learn pick-and-place tasks
without using demonstration states during training.

Hierarchical reinforcement learning (HRL) approaches uti-
lize temporal abstraction [2] or information asymmetry [14,
16] to introduce inductive biases for learning complicated tasks
and transferable skills. Frameworks that combine multiple
different tasks through a high level task selection policy [30, 7]
have also shown effectiveness for learning sparse reward tasks.
Intrinsic exploration approaches, instead, augments the reward
signals by adding task-agnostic rewards which encourage
the agent to explore novel or uncertain states [20]. Many
approaches in the theme of intrinsic exploration have been pro-
posed to alleviate the burden of reward engineering when train-
ing RL agents: visit counts and pseudo-counts [35] encourage
the agent to explore states that are less visited; novelty-
based approaches [28, 29] motivate the agent to conduct
actions that lead to more uncertain results; reachability-based
approaches [31] gives rewards to the observations outside
of the explored states that take more environment steps to
reach; diversity-driven approaches [11, 33] learn skills using
a maximum entropy policy to allow for the unsupervised
emergence of diverse skills; and information gain [24, 17, 19]
encourages the agent to explore states that will improve
its belief about the dynamics. However, count-based and
uncertainty-based exploration methods often can’t distinguish
between task-irrelevant distractions and task-related novelties,
and the high computational complexity largely restricts the
application of existing information-theoretic methods in prac-
tical robotic manipulation tasks. The approach proposed in
this paper falls under the category of information-theoretic
intrinsic exploration, and we provide insight into reasonable
approximations that can make the computation of information-

theoretic quantities feasible when the state and action spaces
are continuous and high-dimensional with complex mutual
dependencies. Extensive experiment results demonstrate the
effectiveness of these approximations as well as the superiority
of the proposed approach over existing intrinsic exploration
approaches in robotic manipulation scenarios.

III. PRELIMINARIES

A. Mutual Information

a) Definition: Mutual information (MI) is a fundamental
quantity for measuring the mutual dependence between ran-
dom variables. It quantifies the amount of information obtained
about one random variable through observing the other. For a
pair of continuous variables X and Y , MI is defined as:

I(X;Y ) =

∫∫
pXY (x, y) log

pXY (x, y)

pX(x)pY (y)
dx dy

= EXY
[

log
pXY
pXpY

]
,

(1)

where pX(x) and pY (y) are the marginal probability density
functions for X and Y respectively, and pXY (x, y) is the joint
probability density function. MI is also often expressed in
terms of Shannon entropy [27] as well as Kullback-Leibler
(KL) divergence:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

= DKL(pXY ||pXpY ),
(2)

where H(X) and H(Y ) are the marginal entropies, H(X|Y )
and H(Y |X) are conditional entropies, H(X,Y ) is the joint
entropy, and DKL(pXY ||pXpY ) denotes the KL-divergence
between the joint distribution and the product of the marginal
distributions.

Conditional MI measures the mutual dependency between
two random variables conditioned on another random variable.
For continuous variables X , Y and Z, conditioned MI is
defined as:

I(X;Y |Z) =

∫∫∫
log
( pXY |Z(x, y|z)
pX|Z(x|z)pY |Z(y|z)

)
·

pX,Y,Z(x, y, z) dx dy dz

= EXY |Z
[

log
pXY |Z

pX|ZpY |Z

]
,

(3)

where pX,Y,Z(x, y, z) is the joint probability density func-
tion, and pX,Y |Z(x, y|z), pX|Y,Z(x|y, z), pY |X,Z(y|x, z),
pX|Z(x|z) and pY |Z(y|z) are conditional probability density
functions.

b) Computation: In general, the computation of MI is
intractable. Exact computation of MI is only tractable for dis-
crete random variables and a limited family of problems with
known probability distributions [3]. Traditional algorithms for
MI maximization, e.g. the Blahut-Arimoto algorithm [8], don’t
scale well to realistic problems because they typically rely on
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enumeration. Therefore, researchers often maximize a lower
bound of MI instead of computing its exact value.

The variational lower bound derived from the non-negativity
of KL-divergence, shown in Equation 4, is one of the most
commonly used lower bounds for MI in the RL community:

I(X;Y ) = EXY
[

log
q(x|y)

p(x)

]
+ EY

[
DKL(p(x|y)||q(x|y))

]
≥ EXY

[
log

q(x|y)

p(x)

]
,

(4)
where q(x|y) is a variational approximation of p(x|y), and the
bound is tight when q(x|y) = p(x|y).

Other variational lower bounds of MI have also been derived
based on a broader class of distance measures called f -
divergence [23, 25, 26]. KL-divergence and Jensen-Shannon
(JS) divergence are two special cases of f -divergence. Based
on the relationship between MI and KL-divergence shown in
Equation 2, a lower bound of MI is derived in [3]:

IKL(X;Y ) ≥ sup
T∈T

EpXY
[T ]− EpXpY [eT−1], (5)

where T is an arbitrary class of functions T : X × Y → R.
The JS definition of MI is closely related to the MI we defined
in Equation 1, and its lower bound can be derived as [19]:

IJS(X;Y ) = DJS(pXY ||pXpY )

≥ sup
T∈T

EpXY
[−sp(−T )]− EpXpY [sp(T )] + log 4,

(6)
where D∗JS(u) = − log(2− exp(u)) is the Fenchel conjugate
of JS-divergence, and sp(u) = log(1 + exp(u)) is the soft
plus function. Detailed derivations of the above bounds and
their counterparts for conditional MI estimation are provided
in Appendix A. Note that Equation 6 is not a lower bound
for the MI we defined in Equation 1, but since the two MIs
are closely related, it is also often used to estimate the MI
defined in Equation 1. In this paper, we refer to the variational
lower bound in Equation 4 as VLB, the lower bound based on
KL-divergence in Equation 5 as KLD, and the lower bound
for JS-divergence based mutual information in Equation 6 as
JSD.

B. Markov Decision Process (MDP)
The problem studied in this paper is formulated as a Markov

Decision Process (MDP) defined by states s ∈ S, actions a ∈
A, a transition model T : S × A × S → R, and a reward
function r : S × A → R. S and A represent the state space
and the action space respectively. The objective of the RL
problem is to find a policy π : S → A that maximizes J =
Eπ[
∑
τ r(st,at)|at ∼ π(st), s0 ∼ p0(s)], where τ denotes

the trajectory. In this paper, we refer to the reward from the
environment as extrinsic reward re and the artificial reward
from the algorithm as intrinsic reward ri, hence r = re + ri.
The sum r is used during the learning process, whereas only re

is considered when evaluating the performance of a learning
algorithm.

C. Empowerment

Empowerment is an information-theoretic quantity that mea-
sures the value of the information an agent obtains in the
action-observation sequences it experiences during the rein-
forcement learning process [24]. It is defined as the maximum
mutual information between a sequence of K actions a and
the final state s′, conditioned on a starting state s:

E(s) = max
π
Iπ(a, s′|s)

= max
π

Ep(s′|a,s)π(a|s)
[

log

(
p(a, s′|s)

π(a|s)p(s′|s)

)]
,

(7)

where a = {a1, . . . , aK} is a sequence of K primitive
actions leading to a final state s′, π(a|s) is exploration policy
over the K-step action sequences, p(s′|a, s) is the K-step
transition probability of the environment, p(a, s′|s) is the joint
distribution of actions sequences and the final state conditioned
on the initial state s, and p(s′|s) is the marginalized probability
over the action sequence.

D. Intrinsic Curiosity Module

Intrinsic Curiosity Module (ICM) [28] is one of the state-
of-the-art novelty-driven intrinsic exploration approaches that
aims at learning new skills by performing actions whose
consequences are hard to predict. It trains an inverse model g
to learn a feature encoding φ that captures the parts of the state
space related to the consequences of the agent’s actions, so that
the agent will focus on the relevant part of the environment and
not get distracted by other details in the camera observations.
It also learns the forward model f and uses the prediction
error of the forward model as the intrinsic reward in order to
facilitate the agent to explore the part of the state space where
it can’t predict the consequences of its own actions very well.

Inverse Model: ât = g(φ(st), φ(st+1));

Forward Model: φ̂(st+1) = f(φ(st), at).
(8)

IV. APPROACH: EMPOWERMENT-BASED INTRINSIC
MOTIVATION

We hypothesize that empowerment would be a good can-
didate for augmenting the sparse extrinsic rewards in manip-
ulation tasks because it indicates the amount of information
contained in the action sequence a about the future state s′.
Through maximizing empowerment, we are effectively encour-
aging the agent to influence the environment in a predictable
way, which is the desired behavior in most manipulation tasks.
However, as a form of conditional MI for continuous variables,
the computation of empowerment is especially challenging.
This is because for conditional MI I(X;Y |Z) with continuous
Z, estimating I(X;Y |Z) for all Z is approximately equivalent
to estimating an infinite number of unconditional MIs. In this
section, we discuss the approaches we take to make empower-
ment a feasible form of intrinsic motivation in practical robotic
manipulation tasks.
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Fig. 1: Overview of the empowerment-based intrinsic motivation approach

A. Approximations to Simplify Empowerment Calculation

Mohamed and Rezende [24] suggest that the empowerment
at each state in the state space can be calculated using an ex-
ploration policy π(a|s) that generates an open-loop sequence
of K actions into the future (Equation 7), so that a closed-
loop policy can be obtained by a planning algorithm using
the calculated empowerment values. Although Mohamed and
Rezende demonstrated the effectiveness of this approach in
grid world environments, it is infeasible to precompute the
empowerment values for all states in a high-dimensional, con-
tinuous state space. Therefore, we make a few approximations
in order to make empowerment-based intrinsic motivation a
practical approach. First, we use only one action step instead of
an action sequence to estimate empowerment. Second, instead
of constructing a separate exploration policy π to first compute
empowerment and then plan a closed-loop policy according
to empowerment, we directly optimize the behavior policy ω
using empowerment as an intrinsic reward in an RL algorithm.
These two approximations mean that the agent will only be
looking at the one-step reachable neighborhood of its current
state to find the policy that leads to high mutual information.
Despite sacrificing global optimality, this approach prioritizes
the policy that controls the environment in a principled way so
that more extrinsic task rewards can be obtained compared to
using random exploration, which help resolve the fundamental
issue in sparse reward tasks.

In addition to the above two approximations, it is also
important to note that in robotic manipulation tasks, we are
typically not interested in the mutual dependence between
robot actions and robot states, and we wish to avoid the robot
trivially maximizing empowerment through motion of its own
body. Therefore, we assume that the state space can be divided
into intrinsic states sin (robot states) and extrinsic states sex

(environment states), and only extrinsic states are used as s′

when calculating empowerment. Namely, the empowerment
used in this paper is defined as:

E(st) ≈ Iω(at, s
ex
t+1|st) = Hω(at|st)−Hω(at|sext+1, st), (9)

where ω is the behavior policy, and the relationship to Shannon
Entropy is derived from Equation 2.

B. Maximizing Empowerment using Mutual Information
Lower Bounds

Neural function approximators have become powerful tools
for numerically estimating conditional MIs for continuous
random variables [24, 3, 19]. However, in most RL scenarios,
since exact distributions are typically unavailable and nu-
merical estimation through sampling is required, computation
of high-dimensional conditional MI remain challenging. As
mentioned in Section III-A, a common practice is to maximize
a lower bound of MI instead of its exact value. We test
the performance of the three MI lower bounds introduced
in Section III-A on distributions with known conditional MI
and provide detailed experiment results in Appendix B. We
conclude that, in terms of estimating the conditional MI of the
continuous random variables we tested on, VLB performs the
best in all cases and KLD performs the worst in most cases.
However, the same conclusion may not be drawn for high-
dimensional distributions with complex mutual dependencies.
In the manipulation tasks in this paper, we noticed that JSD is
the best performer on Fetch and VLB is the best performer on
PR2, hence we will report the results with the corresponding
best performer in each environment.

C. Combination with ICM to Facilitate Empowerment Com-
putation

Another challenging issue with empowerment-based RL is
that well-balanced data are not easy to obtain at the beginning
of training. If we initialize the RL agent with a random policy,
it will highly likely explore much more of the empty space
than regions with object interactions because the interaction-
free part of the state space is often much larger. However, since
at and sext+1 are independent without interactions, the training
data fed into the empowerment estimation network will be
strongly biased towards the zero empowerment regions, which
makes it very difficult to train accurate estimation models.
Therefore, it is crucial that enough training data in the interact-
ing part of the state space can be obtained at the beginning of
training in order to get accurate estimations of empowerment.
We achieve this through combining empowerment with the for-
ward model of ICM using adaptive coefficients, which initially
place more weight on ICM to ensure enough well-balanced
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(a) Fetch with a box (b) Fetch with a cylinder (c) Fetch with a sphere (d) PR2 with a box

Fig. 2: Simulation environments

(a) (b) (c)

(d) (e)

Fig. 3: Experiment results. (a)-(d) compare the performance of the proposed empowerment-based approach (referred to as
empowerment with ICM since ICM is used to help training the empowerment prediction networks) with ICM and Disagreement
in object lifting tasks, and (e) compares the proposed empowerment-based approach with HER in pick-and-place tasks. The
solid lines represent the mean, the shadow areas represent the 95% confidence intervals, and the dashed lines in (e) represent
the maximum and minimum values.

data are fed to the empowerment estimation networks, and
then switches more weight to empowerment to encourage the
robot to learn controllable behaviors. Figure 1 summarizes the
proposed empowerment-based intrinsic motivation approach,
and Appendix C elaborates on the algorithm implementation
details.

V. EMPIRICAL EVALUATION

A. Environment Setup

In order to compare the performance of the empowerment-
based intrinsic motivation with other state-of-the-art intrinsic
motivations, we created four object-lifting tasks with different
object shapes in OpenAI Gym [5] and Gazebo, as shown in
Figure 2. The Gym environment uses a Fetch robot with a

25D state space (including the poses and velocities of the end-
effector, the gripper and the object) and a 4D action space
(including the actions of the end-effector and gripper), and
the Gazebo environment uses a PR2 robot with a 38D state
space (including the poses and velocities of all joints and
the object) and an 8D action space (including the actions
of manipulator joints). We also use the FetchPickAndPlace-
V1 task provided in Gym in order to compare with HER
because HER requires a goal-conditioned environment. In the
four object-lifting tasks, the goal is to lift up the object, and
the extrinsic reward is only given when the object’s height
is above a threshold. In the pick-and-place task, the reward is
given when the distance of the object to the goal pose is within
a threshold. Our approach can be easily integrated with any
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standard RL algorithm, but in this paper, we use Proximal
Policy Optimization (PPO) [32] as the RL agent for all
experiments to demonstrate its performance. Experiments on
the Fetch robot use 60 parallel environments for training, and
PR2 experiments use 40 due to its higher CPU requirement.
Implementation details including hyperparameters and task
rewards are provided in Appendix C.

B. Experiment Results

In this section, we provide experiment results that com-
pare the proposed empowerment-based intrinsic motivation
approach with other state-of-the-art algorithms, including
ICM [28], exploration via disagreement [29] (referred to as
Disagreement in this paper) and HER [1]. We use our im-
plementation of ICM and Disagreement, and use the OpenAI
Baselines implementation [10] for HER. In both ICM and
Disagreement, we also make the same assumption as in the
empowerment implementation that the state space can be
divided into intrinsic states and extrinsic states, and only the
prediction error or variance of the extrinsic states contribute to
the intrinsic rewards. We run HER with 2 MPI processes with
30 parallel environments each to make sure it is equivalent
to the 60 parallel environments in other experiments. Other
parameters for HER are set to default. All the results in
the Fetch environment are averaged over 10 different random
seeds, and the results in the PR2 environment are averaged
over 8 random seeds.

Figure 3(a)-(c) compare the performance of our approach
with ICM, Disagreement, and PPO without any intrinsic
reward in the object-lifting tasks with a Fetch robot, and
Figure 3(d) compares our approach with ICM and Disagree-
ment in box-lifting tasks with a PR2 robot. In the Fetch
environment, the cylinder lifting task is much more difficult
compared to box lifting and sphere lifting, thus we use a larger
scale α for extrinsic lifting reward. Similarly, we also use
a larger α for the box-lifting task with the PR2 robot since
this environment is much higher-dimensional and hence more
difficult for an RL agent. From Figure 3(a)-(c) we can see
that the reward curve for PPO without any intrinsic reward
remains almost zero, which proves that sparse reward tasks
are very challenging for vanilla RL algorithms. In all four
environments, our empowerment-based approach is able to
help the robot achieve higher lifting rewards faster than other
approaches we compared with. The Disagreement approach is
able to perform better in the box lifting task with the Fetch
robot after training for a long time, but it performs much
worse than the other two intrinsic motivations in the cylinder
and sphere lifting tasks. Another finding from Figure 3(a)-
(c) is that the advantage of the empowerment-based intrinsic
motivation is much more obvious in the cylinder and sphere
lifting tasks compared to the box lifting tasks. We hypothesize
that this is because the ability of “controlling” the object is
much more important when there are round surfaces, since
these objects are more difficult to pick up and also more
likely to randomly roll around when novelty is the only
intrinsic motivation. In fact, in the cylinder lifting task, our

Fig. 4: Comparison of off-policy implementation and on-
policy implementation of the empowerment-based intrinsic
exploration approach in the sphere lifting environment. The
solid lines represent the mean of 10 experiments with differ-
ent random seeds, and the shadow areas represent the 95%
confidence intervals.

empowerment-based intrinsic motivation is the only approach
that allows the agent to learn to directly pick up the cylinder
from the top without knocking it down first, whereas agents
trained with ICM will knock down the cylinder and then pick
up radially. In Figure 3(d), although the confidence intervals
are wider due to the smaller number of runs, we can still
get the similar conclusion that our approach shows the best
performance.

Figure 3(e) compares the empowerment-based intrinsic mo-
tivation with HER in the Fetch pick-and-place environment.
We can see that although the average success rate of HER
goes up much faster, it stays at about 0.5 even after a long
time of training. In fact, the maximum value dashed line
in Figure 3(e) shows that none of the 10 runs of HER has
reached a success rate of 0.6 or above. In contrast, although
the empowerment approach is slower in the initial learning
phase, in 3 out of 10 runs it has learned to lift up the object
and reach the goals in the air accurately and quickly, and the
success rate stays at about 1 in these tests. This is because
in the Gym FetchPickAndPlace-V1 task, half of the goals are
sampled from on the table and half are sampled in the air,
thus agents that only learned to push can still reach the goals
close to the tabletop and receive a success rate of about 0.5,
but only agents that actually learned to pick and place will
reach a success rate of 1.0.

C. Off-Policy Implementation

Our algorithm can also be used on off-policy RL algorithms
but requires additional adaptation. This is because intrinsic
rewards are not “ground truth” rewards and their values are
not very meaningful until the neural networks are trained
to predict intrinsic rewards well. Since the estimation of
conditional mutual information is very challenging and the
empowerment networks typically take a long time to get well
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(a) (b) (c) (d) (e)

Fig. 5: Qualitative performance of the proposed empowerment-based intrinsic motivation when combined with the diversity-
driven DIAYN [11] approach in the box lifting task with a Fetch robot. (a)-(e) show the different skills learned when the
number of skills in DIAYN is set to 5.

(a) (b) (c) (d) (e)

Fig. 6: Different skills learned with DIAYN [11] without the empowerment-based intrinsic motivation in the box lifting task
with a Fetch robot when the number of skills is set to 5.

trained, mixing up experiences with reward values predicted at
different training steps in the same replay buffer will influence
the overall performance and makes off-policy training very
tricky. Therefore, we implemented an off-policy version by
recomputing the intrinsic reward values with the updated net-
work parameters every time the algorithm draws experiences
from the replay buffer. We demonstrate its performance in the
sphere lifting environment in Gym in Figure 4 and show that
the off-policy implementation is much more sample-efficient.

VI. APPLICATION: LEARNING A DIVERSE SET OF SKILLS

Besides its advantage in solving sparse reward RL tasks,
another driving force for research on intrinsic motivation
is its potential in unsupervised skill discovery. Many HRL
frameworks allow RL agents to learn policies of different
levels so that high-level policies only need to focus on the
skill-space that low-level controllers provide instead of the raw
state-space. However, the skills an end-to-end HRL system
can learn are limited and they often require guidance from
human-designed “curricula” [2, 30, 7]. In contrast, skills
discovered by intrinsic motivations can reduce HRL frame-
works’ dependence on human engineering and potentially
enable them to learn more complicated tasks. Ultimately, we
hope the empowerment-based intrinsic motivation proposed in
this paper can also be incorporated into a HRL framework
and contribute to the learning of complicated manipulation
skills, such as opening a container and stacking objects
inside. In order to see what type of skills an agent can
learn with our approach, we provide preliminary qualitative
results combining empowerment and the Diversity is All You

Need (DIAYN) approach [11] in the “Fetch with a box”
environment. Figure 5 and 6 compare the skills learned by
combining empowerment and DIAYN as the intrinsic reward
and the skills learned with only DIAYN as the intrinsic reward.
From Figure 6 we can see that without an intrinsic motivation
that drives the agent to control the object, the skills learned
through a purely diversity-driven approach are not meaningful
in terms of solving manipulation tasks because they don’t
involve interactions with the object. In comparison, Figure 5
demonstrates the potential of this combined intrinsic reward
in terms of learning a set of meaningful manipulation skills,
including pushing the object to different directions and lifting
the object up. Videos of the learned skills can be found at https:
//sites.google.com/view/empowerment-for-manipulation/.

VII. DISCUSSION

In this paper we present a novel intrinsic motivation for
robotic manipulation tasks with sparse extrinsic rewards that
leverages recent advances in both mutual information max-
imization and intrinsic novelty-driven exploration. Through
maximizing the mutual dependence between robot actions and
environment states, namely the empowerment, this intrinsic
motivation helps the agent to focus more on the states where
it can effectively “control” the environment instead of the
parts where its actions cause random and unpredictable conse-
quences. Despite the challenges posed by conditional mutual
information maximization with continuous high-dimensional
random variables, we are able to successfully train neural
networks that make reasonable predictions on empowerment
with the help of novelty-driven exploration methods at the
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beginning of the learning process. This approach can be easily
integrated into any RL algorithm to accelerate their learning
progress, or be combined with approaches like HER and
imitation learning to further improve their performance.

Empirical evaluations in different robotic manipulation envi-
ronments with different shapes of the target object demonstrate
the advantages of this empowerment-based intrinsic motivation
over other state-of-the-art solutions to sparse-reward RL tasks.
In addition, we also combine this approach with diversity-
driven intrinsic motivation and show that the combination is
able to encourage the manipulator to learn a diverse set of
ways to interact with the object, whereas with the diversity-
driven rewards alone the manipulator is only able to learn
how to move itself in different directions. In future work, we
hope to apply this empowerment-based intrinsic motivation
in a HRL framework that can utilize it to learn a diverse
yet meaningful set of manipulation skills, so that the HRL
agent can ultimately accomplish more complicated tasks that
existing approaches can’t learn from scratch without reward
shaping or demonstrations, such as opening a container and
stacking objects inside.
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APPENDIX A
DERIVATION OF MUTUAL INFORMATION LOWER BOUNDS

The VLB shown in Equation 4 can be derived based on the
non-negativity of KL-divergence:

I(X;Y ) = EXY
[

log
p(x|y) · q(x|y)

p(x) · q(x|y)

]
= EXY

[
log

q(x|y)

p(x)

]
+ EXY

[
log

p(x|y)

q(x|y)

]
= EXY

[
log

q(x|y)

p(x)

]
+ EY

[
DKL(p(x|y)||q(x|y))

]
≥ EXY

[
log

q(x|y)

p(x)

]
.

(10)
Similar to Equation 2, conditional MI can also be written as:

I(X;Y |Z) = H(X|Z)−H(X|Y,Z)

= H(Y |Z)−H(Y |X,Z)

= H(X|Z) +H(Y |Z)−H(X,Y |Z)

= DKL(pXY |Z ||pX|ZpY |Z),

(11)

For conditional MI I(X;Y |Z), the VLB can be derived as:

I(X;Y |Z) =EXY |Z
[

log
p(x|y, z) · q(x|y, z)
p(x|z) · q(x|y, z)

]
=EXY |Z

[
log

q(x|y, z)
p(x|z)

]
+ EXY |Z

[
log

p(x|y, z)
q(x|y, z)

]
=EXY |Z

[
log

q(x|y, z)
p(x|z)

]
+ EY |Z

[
DKL(p(x|y, z)||q(x|y, z))

]
≥EXY |Z

[
log

q(x|y, z)
p(x|z)

]
.

(12)
where q(x|y, z) is a variational approximation of p(x|y, z),
and the bound is tight when q(x|y, z) = p(x|y, z).

The f -divergence between two distributions P and Q is
defined as:

Df (P (z)||Q(z)) =

∫
f

(
dP

dQ

)
dQ =

∫
z

f

(
p(z)

q(z)

)
q(z) dz,

(13)
where the generator function f : R+ → R is a convex, lower-
semicontinuous function satisfying f(1) = 0. The variational
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lower bound of f -divergences has been derived in [25] and
[26]:

Df (P (z)||Q(z)) ≥ sup
T∈T

(Ez∼P [T (z)]− Ez∼Q[f∗(T (z))]),

(14)
where T is and arbitrary class of functions T : Z → R, and
f∗ is the convex conjugate of f . Equation 14 yields a lower
bound because the class of functions T may only contain a
subset of all possible functions, and under mild conditions on
f [25], the bound is tight when:

T (x) = f ′
(
p(z)

q(z)

)
. (15)

KL-divergence is a special case of f -divergence when the
generator function f(u) = u log u [26]. Therefore, a lower
bound of KL-divergence can be derived as Equation 5. For
conditional MI I(X;Y |Z), the KLD lower bound can be
written as:

IKL(X;Y |Z) ≥ sup
T∈T

EpXY |Z [T ]− EpX|ZpY |Z [eT−1], (16)

where T is an arbitrary class of functions T : X×Y×Z → R.
Jensen-Shannon (JS) divergence is another special case of

f -divergence. It can be expressed in terms of KL-divergence:

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (17)

where M = 1/2(P +Q). JS-divergence represents the mutual
information between a random variable A associated to a
mixture distribution between P and Q and a binary indicator
variable B that is used to switch between P and Q. In
particular, if we use P to represent the joint distribution pXY
and use Q to represent the product of the marginal distributions
pXpY , then:

p(A|B) =

{
p(x, y) if B = 0,

p(x)p(y) if B = 1.
(18)

That is, the random variable A is chosen according to the
probability measure M = (P + Q)/2, and its distribution is
the mixture distribution. Then the relationship between JS-
divergence and mutual information can be derived as follows:

I(A;B) =H(A)−H(A|B)

=−
∑

M logM +
1

2
[
∑

P logP +
∑

Q logQ]

=−
∑ P

2
logM −

∑ Q

2
logM

+
1

2
[
∑

P logP +
∑

Q logQ]

=
1

2

∑
P (logP − logM)

+
1

2

∑
Q(logQ− logM)

=DJS(P ||Q).
(19)

Therefore, if we define the Jensen-Shannon mutual infor-
mation (JSMI) between two random variables X and Y as
the JS-divergence between their joint distribution and the
product of their marginal distributions, i.e. IJS(X;Y ) ≡
DJS(pXY ||pXpY ), then Equation 19 shows that:

IJS(X;Y ) = I(A;B). (20)

The advantage of using JS-divergence is that it is not only
symmetric but also bounded from both below and above [19].
Although different from the commonly accepted definition of
MI, JSMI is closely correlated to MI and can also represent
the mutual dependence between random variables. It is shown
in [26] that JS-divergence is a special case of f -divergence
when the generator function f(u) = −(u+1) log((1+u)/2)+
u log u, hence its lower bound can be derived as:

IJS(X;Y ) =DJS(pXY ||pXpY )

≥ sup
T∈T

EpXY
[log 2− log(1 + e−T )]

− EpXpY [D∗JS(log 2− log(1 + e−T ))]

= sup
T∈T

EpXY
[−sp(−T )]− EpXpY [sp(T )] + log 4,

(21)
where D∗JS(u) = − log(2− exp(u)) is the Fenchel conjugate
of JS-divergence, and sp(u) = log(1 + exp(u)) is the soft
plus function. The JSD lower bound for conditional MI can
be written as:

IJS(X;Y |Z) =DJS(pXY |Z ||pX|ZpY |Z)

≥ sup
T∈T

EpXY |Z [log 2− log(1 + e−T )]

− EpX|ZpY |Z [D∗JS(log 2− log(1 + e−T ))]

= sup
T∈T

EpXY |Z [−sp(−T )]

− EpX|ZpY |Z [sp(T )] + log 4,
(22)

where T is an arbitrary class of functions T : X×Y×Z → R.
Following Equation 15 we can then derive that the bound for
conditional JSD is tight when:

T (x) = f ′
(

p(x, y|z)
p(x|z)p(y|z)

)
, (23)

hence T can be used as the empowerment intrinsic reward if
we maximize the conditional JSD bound in Equation 22.

APPENDIX B
COMPARISON OF MUTUAL INFORMATION LOWER BOUNDS

We construct a set of distributions with known theoretical
MI:

Z ∼ N (0, σ2
z), X = Z + e, e ∼ N (0, 1),

Y =

{
Z +X · Z + f if Z > 0,

f if Z ≤ 0,
f ∼ N (0, n2).

(24)
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TABLE I: Comparison of Mutual Information Lower Bounds

Dimension Theoretical
Average MI

Training
Data Size

Root Mean Square Error (RMSE)
VLB KLD JSD

1 0.2911

20000 0.0713 0.1661 0.1594
40000 0.0424 0.1291 0.1242
60000 0.0502 0.1509 0.1785

2 0.5821

20000 0.0974 0.3745 0.2578
40000 0.1121 0.3517 0.3292
60000 0.0942 0.2139 0.2105

3 0.8732

20000 0.1594 0.4825 0.4573
40000 0.1508 0.4828 0.4573
60000 0.1407 0.4129 0.3176

4 1.1643

20000 0.2222 0.5879 0.5406
40000 0.1665 0.6092 0.4101
60000 0.1611 0.4928 0.4326

Based on the theoretical MI for bivariate Gaussian distribu-
tions [15], we can compute the conditional MI:

I(X;Y |Z) =
1

2
log(1 +

z2

n2
). (25)

We conduct tests on the X , Y and Z random variables
described above with σz = 1 and n = 0.5. We compare
the performance of the three different estimation approaches
introduced in Section III-A given different variable dimensions
and different sizes of training data, and evaluate them using the
root mean square error (RMSE) compared to the theoretical
value of MI computed through Equation 25. We use a neural
network with one hidden layer of 256 units as the MI esti-
mator for each approach. We compare the performance of the
three different estimation approaches given different variable
dimensions and different sizes of training data, and the results
are shown in Table I. The performance of each estimation
approach is evaluated based on the root mean square error
(RMSE) compared to the theoretical value of MI computed
through Equation 25.

From Table I we can see that the VLB has the lowest RMSE
in all the test cases on this random variable set, whereas
the KLD bound performs the worst in most cases. From
the comparison between the RMSE and the absolute values
of theoretical average MI we can see that it is possible to
get a relatively accurate approximation of the conditional MI
through numerical estimation when the mutual dependency
between random variables are simple.

APPENDIX C
EXPERIMENT DETAILS

For the experiments shown in this paper, we implemented
the empowerment-based approach, the ICM approach and the
Disagreement approach as intrinsic rewards with an on-policy
implementation of PPO. We use a three hidden-layer fully-
connect neural network with (128, 64, 32) units in each layer
for both the policy network and the value network, and set γ =
0.99 and λ = 0.95 in the PPO algorithm. We use the Adam
optimizer with learning rate 2e−4. All experiments shown in
this paper are conducted on a 10-core Intel i7 3.0 GHz desktop
with 64 GB RAM and one GeForce GTX 1080 GPU.

a) ICM Implementation: In the experiments in this paper,
since we assume pose estimations are available, the inverse
model of ICM is not necessary. In the ICM implementation,
we train the forward model f by minimizing the forward loss:

Lft =
1

2
||f
(
sext ,at

)
− sext+1||22. (26)

To compute the forward loss in the ICM approach, we use one
256-unit hidden layer in the network, and we didn’t compute
inverse loss because the observations in this paper are poses
instead of images. The value of the forward loss Lft is also
used as the ICM intrinsic reward:

rICMt = Lft , (27)

and we normalize rICMt using running average before sum-
ming it up with the extrinsic reward to get the final reward for
training the RL agent:

rt = 0.01r̄ICMt + ret . (28)

b) Disagreement Implementation: In the Disagreement
approach, we use the same network structure as in ICM and
use five of these networks as the ensemble to compute the
disagreement reward. We compute the forward losses for each
of the five forward models in the same way as Equation 26,
and sum up the five forward losses as the total loss to train
the forward models. The intrinsic reward is calculated as:

rDist = var{ŝex,1t+1 , . . . , ŝ
ex,5
t+1 }, (29)

where ŝex,1t+1 through ŝex,5t+1 are the forward predictions made by
the five forward models. We also use running average to get
the normalized disagreement intrinsic reward r̄Dist and then
sum it up with the extrinsic reward to get the final reward for
training the RL agent:

rt = 0.01r̄Dist + ret . (30)
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c) Empowerment Implementation: For the neural net-
work that makes empowerment prediction in the PR2 envi-
ronment, we apply Gated Linear Units (GLU) [9] to improve
performance. We use a neural network with four GLU layers
with 256 gates each and two hidden fully-connected layers
with (128, 64) units to predict p(at|sext+1, st), and calculate
empowerment with the variational lower bound. Namely, we
use

rEmpt = log p(at|sext+1, st)− log p(at|st) (31)

as the empowerment intrinsic reward so that in expectation,
the empowerment reward being maximized is equivalent to the
empowerment defined in Equation 9. In the Fetch environment,
we use a neural network with six hidden fully-connected layers
with (512, 512, 216, 128, 64, 32) units to approximate the
T function in Equation 22 and calculate empowerment with
the JS-Divergence approximation. In order to approximate the
supremum in Equation 22, we use the following loss function
in order to train T network:

LEmpt = sp(−T (at, st, s
ex
t+1)) + sp(T (ãt, st, s

ex
t+1))− log 4,

(32)
where at is the true action executed at time step t and ãt is
sampled from the policy. The empowerment intrinsic reward
in the Fetch environment is:

rEmpt = T (at, st, s
ex
t+1). (33)

In our empowerment-based intrinsic motivation implemen-
tation, empowerment reward and ICM reward are combined
through weight coefficients to ensure that the agent can collect
enough data in the nonzero empowerment region to train the
empowerment network well before it is used as the intrinsic
reward. The weight coefficients used in this paper are:

wICMt = 0.5× (1− tanh(200(rICMt − 0.12))),

wEmpt = 1− wICMt ,
(34)

where rICMt is the forward prediction error (computed through
Equation 26 and 27) averaged from all the parallel environ-
ments at time step t. These weight coefficients make sure
that at the beginning of training when the robot don’t have
much interaction with the object, the coefficient for ICM
reward is near 1 and the coefficient for empowerment reward
is near 0. After the average ICM reward reaches a certain
threshold, which means the robot have learned to interact
with the object and the empowerment network can obtain
enough meaningful data to get well trained, the coefficient
for ICM reward switches to near 0 and the coefficient of the
empowerment reward switches to near 1. Then this intrinsic
reward and extrinsic task reward are combined as the RL
algorithm reward:

rit = wICMt r̄ICMt + wEmpt r̄Empt ,

rt = 0.01rit + ret ,
(35)

where r̄ICMt and r̄Empt are normalized using running average.
d) Extrinsic Task Rewards: In the box-lifting task and the

pick-and-place task in the Fetch environment, the object is a
cube with 0.05 m edges. In the cylinder-lifting environment,
the height of the cylinder is 0.1 m and the radius is 0.03 m.
In the sphere-lifting environment, the radius of the sphere is
0.04 m. In both the box-lifting and sphere-lifting task, the task
reward is given as Equation 36 when the center of the grippers
is less than 0.01 m away from the center of the object. In the
cylinder-lifting task, the condition for giving task reward is
the same, but the reward is given as Equation 37. In the pick-
and-place task, the task reward is 1 when the object pose is
within 0.05 m of the target pose, and 0 otherwise.

Fetch with box or sphere: ret = 50 · (h− 0.01), (36)

Fetch with cylinder: ret = 500 · (h− 0.01), (37)

In the box-lifting task in the PR2 environment, the object
is a cube with 0.06 m edges, and the task reward is given as
Equation 38 when both grippers are in contact with the object
and the object height is at least 0.012 m above the tabletop.

PR2 with box: ret = 500 · (h− 0.012). (38) ���
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